scholarly journals OR22-05 Rare Biallelic Variants in Obesity-Related Genes in the Madrid Pediatric Obesity Cohort

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Gabriel Á Martos-Moreno ◽  
Ida Hatoum Moeller ◽  
Álvaro Martín-Rivada ◽  
Luis A Pérez-Jurado ◽  
Jesús Argente

Abstract BACKGROUND: Obesity is a heterogenous disease resulting from environmental and genetic factors and is characterized by disordered energy balance, regulated in part by the hypothalamic melanocortin-4 receptor (MC4R), including neuronal ciliary assembly and trafficking pathways.1 Rare loss-of-function variants in genes encoding components of this pathway are associated with severe obesity and hyperphagia, with or without additional features.2 However, such rare genetic disorders may be underestimated due to a lack of genetic screening in individuals with severe obesity.3 Our objective was to identify and characterize rare genetic variants in a Spanish population from Madrid with childhood obesity. Methods: This analysis was conducted from a prospectively-collected cohort of children with obesity, generally with a BMI>+3DS. Participants were sequenced for 35 obesity-related genes, including 23 genes related to Bardet-Biedl (BBS) and Alström syndromes, plus an additional 12 genes associated with non-syndromic, monogenic causes of obesity, to identify individuals with rare (<1% frequency in gnomAD) potentially biallelic (homozygous and compound heterozygous) non-synonymous variants in protein-coding regions. Results: Of the 1019 Spanish patients with obesity, 493 (48.4%) were female and the mean age and BMI were 10.41 ± 3.38 years and 4.38 ± 1.76 SDS (79.8% above +3 SDS), respectively. We identified 26 rare potentially biallelic variants in 25 unique individuals, including 2 individuals with homozygous variants in POMC, 3 individuals with two variants in SRC1, one individual with two variants in ADCY3, and one individual with a homozygous mutation in LEP. In addition, we identified 18 individuals with biallelic mutations in one of 23 BBS or ALMS1 genes, including two individuals with known pathogenic variants and clinically confirmed BBS. Conclusions: Rare and potentially biallelic sequence variants were identified in 25 individuals with childhood obesity. These results support the use of genetic testing for individuals with severe obesity who may be candidates for specific clinical interventions or additional targeted therapies.

Author(s):  
Anna Letko ◽  
Ben Strugnell ◽  
Irene M. Häfliger ◽  
Julia M. Paris ◽  
Katie Waine ◽  
...  

Abstract Sporadic occurrences of neurodegenerative disorders including neuroaxonal dystrophy (NAD) have been previously reported in sheep. However, so far no causative genetic variant has been found for ovine NAD. The aim of this study was to characterize the phenotype and the genetic aetiology of an early-onset neurodegenerative disorder observed in several lambs of purebred Swaledale sheep, a native English breed. Affected lambs showed progressive ataxia and stiff gait and subsequent histopathological analysis revealed the widespread presence of axonal spheroid indicating neuronal degeneration. Thus, the observed clinical phenotype could be explained by a novel form of NAD. After SNP genotyping and subsequent linkage mapping within a paternal half-sib pedigree with a total of five NAD-affected lambs, we identified two loss-of-function variants by whole-genome sequencing in the ovine PLA2G6 gene situated in a NAD-linked genome region on chromosome 3. All cases were carriers of a compound heterozygous splice site variant in intron 2 and a nonsense variant in exon 8. Herein we present evidence for the occurrence of a familial novel form of recessively inherited NAD in sheep due to allelic heterogeneity at PLA2G6. This study reports two pathogenic variants in PLA2G6 causing a novel form of NAD in Swaledale sheep which enables selection against this fatal disorder.


2019 ◽  
Vol 23 (3) ◽  
pp. 235-239
Author(s):  
Sakil Kulkarni ◽  
Brooj Abro ◽  
Maria Laura Duque Lasio ◽  
Janis Stoll ◽  
Dorothy K Grange ◽  
...  

We report a term female infant born to nonconsanguineous parents who presented with renal failure at birth, hypothyroidism, cholestasis, and progressive cardiac dysfunction. Multigene next-generation sequencing panels for cholestasis, cardiomyopathy, and cystic renal disease did not reveal a unifying diagnosis. Whole exome sequencing revealed compound heterozygous pathogenic variants in ANKS6 (Ankyrin Repeat and Sterile Alpha Motif Domain Containing 6), which encodes a protein that interacts with other proteins of the Inv compartment of cilium ( NEK8, NPHP2/INVS, and NPHP3). ANKS6 has been shown to be important for early renal development and cardiac looping in animal models. Autopsy revealed cystic renal dysplasia and cardiomyocyte hypertrophy, disarray, and focal necrosis. Liver histology revealed cholestasis and centrilobular necrosis, which was likely a result of progressive cardiac failure. This is the first report of compound heterozygous variants in ANKS6 leading to a nephronopthisis-related ciliopathy-like phenotype. We conclude that pathogenic variants in ANKS6 may present early in life with severe renal and cardiac failure, similar to subjects with variants in genes encoding other proteins in the Inv compartment of the cilium.


2020 ◽  
Vol 62 (1) ◽  
Author(s):  
Joana Gonçalves Pontes Jacinto ◽  
Irene Monika Häfliger ◽  
Anna Letko ◽  
Cord Drögemüller ◽  
Jørgen Steen Agerholm

Abstract Background Congenital bovine chondrodysplasia, also known as bulldog calf syndrome, is characterized by disproportionate growth of bones resulting in a shortened and compressed body, mainly due to reduced length of the spine and the long bones of the limbs. In addition, severe facial dysmorphisms including palatoschisis and shortening of the viscerocranium are present. Abnormalities in the gene collagen type II alpha 1 chain (COL2A1) have been associated with some cases of the bulldog calf syndrome. Until now, six pathogenic single-nucleotide variants have been found in COL2A1. Here we present a novel variant in COL2A1 of a Holstein calf and provide an overview of the phenotypic and allelic heterogeneity of the COL2A1-related bulldog calf syndrome in cattle. Case presentation The calf was aborted at gestation day 264 and showed generalized disproportionate dwarfism, with a shortened compressed body and limbs, and dysplasia of the viscerocranium; a phenotype resembling bulldog calf syndrome due to an abnormality in COL2A1. Whole-genome sequence (WGS) data was obtained and revealed a heterozygous 3513 base pair deletion encompassing 10 of the 54 coding exons of COL2A1. Polymerase chain reaction analysis and Sanger sequencing confirmed the breakpoints of the deletion and its absence in the genomes of both parents. Conclusions The pathological and genetic findings were consistent with a case of “bulldog calf syndrome”. The identified variant causing the syndrome was the result of a de novo mutation event that either occurred post-zygotically in the developing embryo or was inherited because of low-level mosaicism in one of the parents. The identified loss-of-function variant is pathogenic due to COL2A1 haploinsufficiency and represents the first structural variant causing bulldog calf syndrome in cattle. Furthermore, this case report highlights the utility of WGS-based precise diagnostics for understanding congenital disorders in cattle and the need for continued surveillance for genetic disorders in cattle.


2021 ◽  
Vol 7 (2) ◽  
pp. e558
Author(s):  
Daphne J. Smits ◽  
Rachel Schot ◽  
Martina Wilke ◽  
Marjon van Slegtenhorst ◽  
Marie Claire Y. de Wit ◽  
...  

ObjectiveWe aimed to identify pathogenic variants in a girl with epilepsy, developmental delay, cerebellar ataxia, oral motor difficulty, and structural brain abnormalities with the use of whole-exome sequencing.MethodsWhole-exome trio analysis and molecular functional studies were performed in addition to the clinical findings and neuroimaging studies.ResultsBrain MRI showed mild pachygyria, hypoplasia of the cerebellar vermis, and abnormal foliation of the cerebellar vermis, suspected for a variant in one of the genes of the Reelin pathway. Trio whole-exome sequencing and additional functional studies were performed to identify the pathogenic variants. Trio whole-exome sequencing revealed compound heterozygous splice variants in DAB1, both affecting the highly conserved functional phosphotyrosine-binding domain. Expression studies in patient-derived cells showed loss of normal transcripts, confirming pathogenicity.ConclusionsWe conclude that these variants are very likely causally related to the cerebral phenotype and propose to consider loss-of-function DAB1 variants in patients with RELN-like cortical malformations.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Niu Li ◽  
Yufei Xu ◽  
Yi Zhang ◽  
Guoqiang Li ◽  
Tingting Yu ◽  
...  

Abstract Background Gain-of-function pathogenic variants of the Erb-B2 receptor tyrosine kinase 3 (ERBB3) gene contribute to the occurrence and development of a variety of human carcinomas through activation of phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) signaling. ERBB3 gene homozygous germline variants, whose loss of function may cause autosomal recessive congenital contractural syndrome, were recently identified. This study aims to identify the disease-causing gene in a Chinese pedigree with variable phenotypes involving multiple systems, including developmental delay, postnatal growth retardation, transient lower limb asymmetry, facial malformations, atrioventricular canal malformation, bilateral nystagmus and amblyopia, feeding difficulties, immunodeficiency, anemia, and liver damage, but without congenital contracture. Methods Trio-whole exome sequencing (WES) was performed to identify the disease-causing gene in a 24-month-old Chinese female patient. The pathogenicity of the identified variants was evaluated using in silico tools and in vitro functional studies. Results Trio-WES revealed compound heterozygous variants of c.1253 T > C (p.I418T) and c.3182dupA (p.N1061Kfs*16) in the ERBB3 gene. Functional studies showed that p.I418T resulted in normal expression of ERBB3, which was capable of interacting with ERBB2. However, the variant impaired ERBB3 phosphorylation, consequently blocking ERBB2 phosphorylation and AKT and ERK activation. The truncated protein resulting from the c.3182dupA variant also lacked the capacity to activate downstream signaling pathways. Conclusions We report the first patient with a novel multisystem syndrome disorder without congenital contracture resulting from biallelic loss-of-function variants of ERBB3.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Keiko Yamamoto-Shimojima ◽  
Hiroaki Ono ◽  
Taichi Imaizumi ◽  
Toshiyuki Yamamoto

AbstractComprehensive genomic analysis was performed in a patient with mild psychomotor developmental delay, elevated creatine kinase, and white matter abnormalities. The results revealed biallelic pathogenic variants in the gene related to merosin-deficient congenital muscular dystrophy, NM_000426.3(LAMA2):c.1338_1339del [p.Gly447Phefs*7] and c.2749 + 2dup, which consist of compound heterozygous involvement with predicted loss-of-function and splicing abnormalities.


2019 ◽  
Vol 57 (4) ◽  
pp. 245-253 ◽  
Author(s):  
Kohji Kato ◽  
Yasuyoshi Oka ◽  
Hideki Muramatsu ◽  
Filipp F Vasilev ◽  
Takanobu Otomo ◽  
...  

Background3C/Ritscher-Schinzel syndrome is characterised by congenital cranio-cerebello-cardiac dysplasia, where CCDC22 and WASHC5 are accepted as the causative genes. In combination with the retromer or retriever complex, these genes play a role in endosomal membrane protein recycling. We aimed to identify the gene abnormality responsible for the pathogenicity in siblings with a 3C/Ritscher-Schinzel-like syndrome, displaying cranio-cerebello-cardiac dysplasia, coloboma, microphthalmia, chondrodysplasia punctata and complicated skeletal malformation.MethodsExome sequencing was performed to identify pathogenic variants. Cellular biological analyses and generation of knockout mice were carried out to elucidate the gene function and pathophysiological significance of the identified variants.ResultsWe identified compound heterozygous pathogenic variants (c.1097dup; p.Cys366Trpfs*28 and c.2755G>A; p.Ala919Thr) in the VPS35L gene, which encodes a core protein of the retriever complex. The identified missense variant lacked the ability to form the retriever complex, and the frameshift variant induced non-sense-mediated mRNA decay, thereby confirming biallelic loss of function of VPS35L. In addition, VPS35L knockout cells showed decreased autophagic function in nutrient-rich and starvation conditions, as well as following treatment with Torin 1. We also generated Vps35l−/− mice and demonstrated that they were embryonic lethal at an early stage, between E7.5 and E10.5.ConclusionsOur results suggest that biallelic loss-of-function variants in VPS35L underlies 3C/Ritscher-Schinzel-like syndrome. Furthermore, VPS35L is necessary for autophagic function and essential for early embryonic development. The data presented here provide a new insight into the critical role of the retriever complex in fetal development.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 510
Author(s):  
Maxim Verlee ◽  
Aude Beyens ◽  
Alper Gezdirici ◽  
Elif Yilmaz Gulec ◽  
Lore Pottie ◽  
...  

Hereditary disorders of connective tissue (HDCT) compromise a heterogeneous group of diseases caused by pathogenic variants in genes encoding different components of the extracellular matrix and characterized by pleiotropic manifestations, mainly affecting the cutaneous, cardiovascular, and musculoskeletal systems. We report the case of a 9-year-old boy with a discernible connective tissue disorder characterized by cutis laxa (CL) and multiple herniations and caused by biallelic loss-of-function variants in EFEMP1. Hence, we identified EFEMP1 as a novel disease-causing gene in the CL spectrum, differentiating it from other HDCT.


2021 ◽  
Vol 12 ◽  
Author(s):  
Magdalena Klaniewska ◽  
Maria Jedrzejowska ◽  
Malgorzata Rydzanicz ◽  
Justyna Paprocka ◽  
Mateusz Biela ◽  
...  

PIEZO2 protein is a unique ion channel that converts mechanical impulses into cellular signals in somatosensory neurons and is involved in various mechanotransduction pathways. The recessive PIEZO2 loss-of-function pathogenic variants are associated with distal arthrogryposis with impaired proprioception and touch (DAIPT). Here we present three new DAIPT patients. The genetic diagnosis was established by exome sequencing and let us to identify 6 novel loss-of-function PIEZO2 variants: four splicing (c.1080+1G>A, c.4092+1G>T, c.6355+1G>T, and c.7613+1G>A), one nonsense (c.6088C>T) and one frameshift variant (c.6175_6191del) for which mosaic variant was identified in proband's mother. All patients presented typical symptoms at birth, with congenital contractures, bilateral hip dislocation/dysplasia, generalized hypotonia, transient feeding and difficulties. Two were afflicted by transient respiratory insufficiency. In all children motor development was severely delayed. In one patient, severe cognitive delay was also observed. Moreover, among the cases described by us there is the youngest diagnosed child to date.


2017 ◽  
Author(s):  
Clothilde Esteve ◽  
Ludmila Francescatto ◽  
Perciliz L. Tan ◽  
Aurélie Bourchany ◽  
Cécile De Leusse ◽  
...  

AbstractDespite the rapid discovery of genes for rare genetic disorders, we continue to encounter individuals presenting with hitherto unknown syndromic manifestations. Here, we have studied four affected people in three families presenting with cholestasis, congenital diarrhea, impaired hearing and bone fragility, a clinical entity we have termed O2HE (Osteo-Oto-Hepato-enteric) syndrome. Whole exome sequencing of all affected individuals and their parents identified biallelic mutations in Unc-45 Myosin Chaperone A (UNC45A), as a likely driver for this disorder. Subsequent in vitro and in vivo functional studies of the candidate gene indicated a loss of function paradigm, wherein mutations attenuated or abolished protein activity with concomitant defects in gut development and function.


Sign in / Sign up

Export Citation Format

Share Document