scholarly journals Statistical inference of transmission fidelity of DNA methylation patterns over somatic cell divisions in mammals

2010 ◽  
Vol 4 (2) ◽  
pp. 871-892 ◽  
Author(s):  
Audrey Qiuyan Fu ◽  
Diane P. Genereux ◽  
Reinhard Stöger ◽  
Charles D. Laird ◽  
Matthew Stephens
2009 ◽  
Vol 21 (1) ◽  
pp. 113 ◽  
Author(s):  
C. Couldrey ◽  
M. P. Green ◽  
D. N. Wells ◽  
R. S. F. Lee

Cloning of domestic animals by somatic cell nuclear transfer (SCNT) has permitted the rescue of valuable genetics and has the potential to allow rapid dissemination of desirable traits in production animals through the use of cloned sires. Whilst cloned animals may show developmental deviations and aberrant DNA methylation suggestive of incomplete nuclear reprogramming, it is widely accepted that their offspring are normal, as any aberrant epigenetic marks are believed to be corrected on passage of the genome through the germline. We assessed the extent of reprogramming by comparing DNA methylation patterns in sperm of SCNT bulls (n = 4) with sperm from bulls generated by AI (n = 5) and with the nuclear donor somatic cells (adult skin fibroblasts). The genomic regions examined were 3 repetitive sequences (satellites 1, 2, and alpha) and CpG islands in 5 genes [HAND1, LIT1, MASH2, IGF2, Dickkopf-1(DKK-1)]. Semen was collected from 16-month-old bulls and assessed for volume, sperm number, morphology, and motility. DNA was extracted from washed sperm and somatic donor cells, bisulfite-treated and processed for quantification of CpG methylation using the Sequenom MassArray system. Methylation levels at individual CpG sites/groups of CpGs were compared between sample groups using the t-test with pooled variances. No apparent difference was detected in semen characteristics between SCNT and AI bulls. Sperm DNA methylation levels were very low in single copy genes with the exception of the CpG island in IGF2, which has previously been shown to be completely methylated in sperm. At all genomic regions examined, each CpG site or CpG groups were methylated to different levels, and each region had a distinctive profile, which was almost invariant between individual sperm samples from either the SCNT or AI bulls. In all sites examined, there were no significant differences in methylation profiles between sperm from SCNT and AI bulls. In contrast, DNA methylation profiles were significantly different between SCNT bull sperm and the donor cells. The exception was the CpG island in MASH2, which was essentially unmethylated in both. For the 3 satellite sequences along with LIT1, HAND1, and to a lesser extent, the DKK-1 region, DNA was significantly less methylated in sperm than in the donor cells. Only IGF2 was significantly more methylated in SCNT and AI sperm than in the donor cells at 10/25 CpG sites (P < 0.02). The results indicate that gametes from SCNT bulls had different epigenotypes from the donor somatic cells. This is the first molecular evidence that donor cell genomes have been reprogrammed in these SCNT bulls and that after going through the germline had acquired DNA methylation profiles that were similar to AI-derived bulls. It also suggests that any epigenetic aberrations that SCNT bulls may harbor are unlikely to be passed on to their offspring through their gametes. Supported by FRST contract C10X0311.


2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)


2010 ◽  
Vol 37 (9) ◽  
pp. 960-966 ◽  
Author(s):  
Jie CHEN ◽  
Dong-Jie LI ◽  
Cui ZHANG ◽  
Ning LI ◽  
Shi-Jie LI

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vanessa Lakis ◽  
◽  
Rita T. Lawlor ◽  
Felicity Newell ◽  
Ann-Marie Patch ◽  
...  

AbstractHere we report the DNA methylation profile of 84 sporadic pancreatic neuroendocrine tumors (PanNETs) with associated clinical and genomic information. We identified three subgroups of PanNETs, termed T1, T2 and T3, with distinct patterns of methylation. The T1 subgroup was enriched for functional tumors and ATRX, DAXX and MEN1 wild-type genotypes. The T2 subgroup contained tumors with mutations in ATRX, DAXX and MEN1 and recurrent patterns of chromosomal losses in half of the genome with no association between regions with recurrent loss and methylation levels. T2 tumors were larger and had lower methylation in the MGMT gene body, which showed positive correlation with gene expression. The T3 subgroup harboured mutations in MEN1 with recurrent loss of chromosome 11, was enriched for grade G1 tumors and showed histological parameters associated with better prognosis. Our results suggest a role for methylation in both driving tumorigenesis and potentially stratifying prognosis in PanNETs.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Todd R. Robeck ◽  
Zhe Fei ◽  
Ake T. Lu ◽  
Amin Haghani ◽  
Eve Jourdain ◽  
...  

AbstractThe development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wardah Mahmood ◽  
Lars Erichsen ◽  
Pauline Ott ◽  
Wolfgang A. Schulz ◽  
Johannes C. Fischer ◽  
...  

AbstractLINE-1 hypomethylation of cell-free DNA has been described as an epigenetic biomarker of human aging. However, in the past, insufficient differentiation between cellular and cell-free DNA may have confounded analyses of genome-wide methylation levels in aging cells. Here we present a new methodological strategy to properly and unambiguously extract DNA methylation patterns of repetitive, as well as single genetic loci from pure cell-free DNA from peripheral blood. Since this nucleic acid fraction originates mainly in apoptotic, senescent and cancerous cells, this approach allows efficient analysis of aged and cancerous cell-specific DNA methylation patterns for diagnostic and prognostic purposes. Using this methodology, we observe a significant age-associated erosion of LINE-1 methylation in cfDNA suggesting that the threshold of hypomethylation sufficient for relevant LINE-1 activation and consequential harmful retrotransposition might be reached at higher age. We speculate that this process might contribute to making aging the main risk factor for many cancers.


2017 ◽  
Vol 11 (suppl_1) ◽  
pp. S124-S124
Author(s):  
A.A. te Velde ◽  
A.Y. Li Yim ◽  
J.R. de Bruyn ◽  
N.W. Duijvis ◽  
W.J. de Jonge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document