scholarly journals Pre-existing neuronal pathways in the leg imaginal discs of Drosophila

Development ◽  
1989 ◽  
Vol 107 (4) ◽  
pp. 855-862 ◽  
Author(s):  
S. Tix ◽  
M. Bate ◽  
G.M. Technau

Injection of a cell lineage tracer (HRP) into Drosophila embryos before cellularization provides a way of selectively labelling cells at later stages that have undergone only a few mitoses. All cells born and differentiating during embryogenesis become labelled, whereas further proliferation and growth during postembryonic development causes an almost complete dilution of the marker in the adult cell complement. Early born neurons visualized in this way are good candidates for executing a pioneering function during postembryonic differentiation of the adult nervous system. In all three pairs of leg imaginal discs, a stereotyped set of larval sense organs becomes selectively labelled. Their axons fasciculate with a larval nerve, which connects the leg disc with the central nervous system. Larval sense organs are not present in the other imaginal discs. Larval neurons are not present in the transformed antennal discs of Antp 73B flies. Nonetheless adult axons successfully navigate to the base of these discs as they differentiate to form ectopic legs. We conclude that embryonically formed larval nerves are not essential for the guidance of adult axons within the leg discs.

1900 ◽  
Vol 39 (3) ◽  
pp. 685-702 ◽  
Author(s):  
Robert Kennedy

From the point of view of its function, a nerve fibre is a conductor of nervous impulses, and as such is the path of communication between two structures, the one situated in the central nervous system, and the other in the periphery. In the mixed nerve, such as the sciatic, the nerve fibres are distinguished as afferent or as efferent, according as they conduct impulses originating at the periphery, and received by a cell in the central nervous system, or vice versâ. It has long since been shown that nerve fibres are capable of conducting impulses in either direction, but normally, from their anatomical connections, the individual nerve fibres are conductors for impulses only in the one or in the other direction. This is proved by the Wallerian method of investigation, as on severance of the posterior spinal root distal to the ganglion only certain fibres degenerate and the conductivity of the nerve only for afferent impulses is lost, while the severance of the anterior root is followed by the degeneration of the remainder with loss of functions depending on efferent impulses.


Development ◽  
1989 ◽  
Vol 105 (1) ◽  
pp. 35-52 ◽  
Author(s):  
A. Ghysen ◽  
C. O'Kane

We have analysed four strains of Drosophila melanogaster which each carry the transposon P[lac,ry+] at a unique genomic location. In one of the strains, P[lac,ry+]A37, all the peripheral neurones that we can identify express the P-lac fusion protein; in at least some cases, and the support cells associated to particular neurones are also labelled. Expression of the fusion protein can be detected in subepidermal cells of the body segments as early as 4–5 h of development, according to a precise and reproducible pattern. On the basis of genetic evidence, we propose that these cells are precursors of sense organs, implying that the development of the peripheral nervous system overlaps in time with the development of the central nervous system. In the other three strains, the fusion product is expressed in unique subsets of cells of the peripheral nervous system, as well as in some other tissues.


Genetics ◽  
1990 ◽  
Vol 126 (4) ◽  
pp. 1033-1044 ◽  
Author(s):  
T Watanabe ◽  
D R Kankel

Abstract Previous genetic studies have shown that wild-type function of the l(1)ogre (lethal (1) optic ganglion reduced) locus is essential for the generation and/or maintenance of the postembryonic neuroblasts including those from which the optic lobe is descended. In the present study molecular isolation and characterization of the l(1)ogre locus was carried out to study the structure and expression of this gene in order to gain information about the nature of l(1)ogre function and its relevance to the development of the central nervous system. About 70 kilobases (kb) of genomic DNA were isolated that spanned the region where l(1)ogre was known to reside. Southern analysis of a l(1)ogre mutation and subsequent P element-mediated DNA transformation mapped the l(1)ogre+ function within a genomic fragment of 12.5 kb. Northern analyses showed that a 2.9-kb message transcribed from this 12.5-kb region represented l(1)ogre. A 2.15-kb portion of a corresponding cDNA clone was sequenced. An open reading frame (ORF) of 1,086 base paris was found, and a protein sequence of 362 amino acids with one highly hydrophobic segment was deduced from conceptual translation of this ORF.


Development ◽  
1964 ◽  
Vol 12 (2) ◽  
pp. 317-331
Author(s):  
D. O. E. Gebhardt ◽  
P. D. Nieuwkoop

The influence of lithium on the amphibian egg has been the subject of a number of investigations. From the work of Lehmann (1937), Töndury (1938), and Pasteels (1945) it is known that exposure of amphibian embryos to lithium results in a progressive cranio-caudal reduction of the central nervous system and a simultaneous conversion of the presumptive notochord into somites. Whereas these experiments were made with whole embryos, attempts have been made in recent years to localize the lithium effect by transplanting or explanting specific parts of the embryo. Gallera (1949), for instance, concluded from his experiments with transplants containing lithium treated presumptive chorda mesoderm, that lithium had reduced the ‘morphogenetic potential’ of this inductor. Lombard (1952), on the other hand, claimed that the susceptibility of amphibian eggs towards lithium was the result of the ion's direct influence on the ectoderm rather than on the presumptive archenteron roof.


1957 ◽  
Vol 34 (3) ◽  
pp. 306-333
Author(s):  
G. M. HUGHES

I. The effects of limb amputation and the cutting of commissures on the movements of the cockroach Blatta orientalis have been investigated with the aid of cinematography. Detailed analyses of changes in posture and rhythm of leg movements are given. 2. It is shown that quite marked changes occur following the amputation of a single leg or the cutting of a single commissure between the thoracic ganglia. 3. Changes following the amputation of a single leg are immediate and are such that the support normally provided by the missing leg is taken over by the two remaining legs on that side. Compensatory movements are also found in the contralateral legs. 4. When two legs of opposite sides are amputated it has been confirmed that the diagonal sequence tends to be adopted, but this is not invariably true. Besides alterations in the rhythm which this may involve, there are again adaptive modifications in the movements of the limbs with respect to the body. 5. When both comrnissures between the meso- and metathoracic ganglia are cut, the hind pair of legs fall out of rhythm with the other four legs. The observations on the effects of cutting commissures stress the importance of intersegmental pathways in co-ordination. 6. It is shown that all modifications following the amputation of legs may be related to the altered mechanical conditions. Some of the important factors involved in normal co-ordination are discussed, and it is suggested that the altered movements would be produced by the operation of these factors under the new conditions. It is concluded that the sensory inflow to the central nervous system is of major importance in the co-ordination of normal movement.


1927 ◽  
Vol 23 (10) ◽  
pp. 1046-1050
Author(s):  
E. V. Sukhova

Speaking about syphilis lesions of the central nervous system, it is impossible not to note that these lesions are among the most severe diseases of the latter. But, on the other hand, their severity is redeemed to some extent by the specific means of combating them which we have in our hands. In this case, the fight against neurolues is reduced not so much to its treatment as to its prevention. Hence the interest with which the question of the influence of various conditions on the occurrence of syphilitic lesions of the central nervous system has recently begun to be comprehensively discussed and the exact causes which, from the general number of syphilitics, distinguish the group subsequently condemned to neurolues have been sought to be elucidated.


2020 ◽  
Vol V (4) ◽  
pp. 16-46
Author(s):  
F. K. Telyatnik

Now I turn to a brief summary of the content of some of the works specially devoted to the study of the cerebellar connections. I am not trying to collect all the literature related to this issue, but will confine myself only to the latest works produced with the help of the method most commonly used at the present time for solving questions about conducting paths, namely the method of rebirth. It must be said that a great service in this relationship was also rendered by the method of development, with the help of which a lot of valuable data were obtained, especially Bekhterev. But I will not dwell on them, since all the data obtained in the works of this author are set forth in the "Conducting Ways" and are already given above. As for the newest work performed according to the method of rebirth, all of them were carried out in such a way that one or another part of the cerebellum was damaged in the animal, or one or the other of its legs, and those regenerations were observed, which followed this damage. My works were produced in the same way, and therefore it is very easy to compare them with the works of other authors. This comparison is also favored by the fact that I produced the coloring of the preparations according to the Marchi method, which was also used by most of the researchers cited below.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Domenico De Berardis ◽  
Stefano Marini ◽  
Monica Piersanti ◽  
Marilde Cavuto ◽  
Giampaolo Perna ◽  
...  

Cholesterol is a core component of the central nervous system, essential for the cell membrane stability and the correct functioning of neurotransmission. It has been observed that cholesterol may be somewhat associated with suicidal behaviours. Therefore, the aim of this paper was to elucidate current facts and views about the role of cholesterol levels in mood disorders. The majority of the studies reviewed in the present paper suggest an interesting relationship between cholesterol (especially lower levels) and suicidality. On the other hand, particularly during the last years, relationships between serum cholesterol and suicidality were doubted on the basis of some recent studies that have not found any correlation. However, the debate on relationships between cholesterol and suicide is open and longitudinal studies on a larger sample of patients are needed to further clarify this important issue.


Development ◽  
1990 ◽  
Vol 110 (3) ◽  
pp. 927-932 ◽  
Author(s):  
P. Simpson ◽  
C. Carteret

The segregation of neural precursors from epidermal cells during development of the nervous system of Drosophila relies on interactions between cells that are thought to be initially equivalent. During development of the adult peripheral nervous system, failure of the cellular interactions leads to the differentiation of a tuft of sensory bristles at the site where usually only one develops. It is thus thought that a group of cells at that site (a proneural cluster) has the potential to make a bristle but that in normal development only one cell will do so. The question addressed here is do these cells constitute an equivalence group (Kimble, J., Sulston, J. and White, J. (1979). In Cell Lineage, Stem Cells and Cell Determination (ed. N. Le Douarin). Inserm Symposium No. 10 pp. 59–68, Elsevier, Amsterdam)? Within clusters mutant for shaggy, where several cells of a cluster follow the neural fate and differentiate bristles, it is shown that these display identical neuronal specificity: stimulation of the bristles evoke the same leg cleaning response and backfilling of single neurons reveal similar axonal projections in the central nervous system. This provides direct experimental evidence that the cells of a proneural cluster are developmentally equivalent.


1959 ◽  
Vol 36 (3) ◽  
pp. 501-511
Author(s):  
M. J. WELLS

1. Octopuses blinded by section of the optic nerves were trained by means of 5-10 V. a.c. shocks to reject objects that they would otherwise take. 2. With trials at 3, 5, or 20 min. intervals, in which the test object was always presented to the same arm, animals learned within four or five trials, thereafter rejecting the test object whenever it was presented. 3. When, after a succession of such negative responses, the object was presented to another arm on the other side of the octopus, the result depended upon the rate of training before the change. Thus the object was taken in the trial immediately following the arm change in nineteen out of twenty-six sets of tests with trials at 3 or 5 min. intervals, but in only two out of twelve sets with trials at 20 min. intervals; further experiments in which changes were made between arms on the same side produced similar results. 4. These results are interpreted as showing that changes occurring as a result of experience directly affecting one arm take a period of several hours to spread and become effective in determining the reactions of the rest. This in turn implies the existence of functionally independent neurone fields representing the individual arms, and is discussed in relation to what is already known about the organization of the tactile system of the octopus.


Sign in / Sign up

Export Citation Format

Share Document