Mechanisms for the construction and developmental control of heterochromatin formation and imprinted chromosome domains

Development ◽  
1990 ◽  
Vol 108 (Supplement) ◽  
pp. 35-45 ◽  
Author(s):  
Kenneth D. Tartof ◽  
Marilyn Bremer

The study of variegating position effects in Drosophila provides a model system to explore the mechanism and material basis for the construction and developmental control of heterochromatin domains and the imprinted genomic structures that they may create. The results of our experiments in this regard have implications for a diverse assortment of long-range chromosome phenomena related to gene and chromosome inactivation. Specifically, as a consequence of our studies on position effect variegation, we propose a simple mechanism of X-chromosome inactivation, suggest a purpose for genomic imprinting, and postulate a general means for regulating the time in development at which certain genes become heterochromatically repressed.

Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1227-1244 ◽  
Author(s):  
Steffi Kuhfittig ◽  
János Szabad ◽  
Gunnar Schotta ◽  
Jan Hoffmann ◽  
Endre Máthé ◽  
...  

Abstract The vast majority of the >100 modifier genes of position-effect variegation (PEV) in Drosophila have been identified genetically as haplo-insufficient loci. Here, we describe pitkinDominant (ptnD), a gain-of-function enhancer mutation of PEV. Its exceptionally strong enhancer effect is evident as elevated spreading of heterochromatin-induced gene silencing along euchromatic regions in variegating rearrangements. The ptnD mutation causes ectopic binding of the SU(VAR)3-9 heterochromatin protein at many euchromatic sites and, unlike other modifiers of PEV, it also affects stable position effects. Specifically, it induces silencing of white+ transgenes inserted at a wide variety of euchromatic sites. ptnD is associated with dominant female sterility. +/+ embryos produced by ptnD/+ females mated with wild-type males die at the end of embryogenesis, whereas the ptnD/+ sibling embryos arrest development at cleavage cycle 1-3, due to a combined effect of maternally provided mutant product and an early zygotic lethal effect of ptnD. This is the earliest zygotic effect of a mutation so far reported in Drosophila. Germ-line mosaics show that ptn+ function is required for normal development in the female germ line. These results, together with effects on PEV and white+ transgenes, are consistent with the hypothesis that the ptn gene plays an important role in chromatin regulation during development of the female germ line and in early embryogenesis.


Genetics ◽  
1992 ◽  
Vol 131 (2) ◽  
pp. 345-352 ◽  
Author(s):  
J C Eissenberg ◽  
G D Morris ◽  
G Reuter ◽  
T Hartnett

Abstract Chromosome rearrangements which place euchromatic genes adjacent to a heterochromatic breakpoint frequently result in gene repression (position-effect variegation). This repression is thought to reflect the spreading of a heterochromatic structure into neighboring euchromatin. Two allelic dominant suppressors of position-effect variegation were found to contain mutations within the gene encoding the heterochromatin-specific chromosomal protein HP-1. The site of mutation for each allele is given: one converts Lys169 into a nonsense (ochre) codon, while the other is a frameshift after Ser10. In flies heterozygous for one of the mutant alleles (Su(var)2-504), a truncated HP-1 protein was detectable by Western blot analysis. An HP-1 minigene, consisting of HP-1 cDNA under the control of an Hsp70 heat-inducible promoter, was transduced into flies by P element-mediated germ line transformation. Heat-shock driven expression of this minigene results in elevated HP-1 protein level and enhancement of position-effect variegation. Levels of variegating gene expression thus appear to depend upon the level of expression of a heterochromatin-specific protein. The implications of these observations for mechanism of heterochromatic position effects and heterochromatin function are discussed.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Sidney H. Wang ◽  
Sarah C. R. Elgin

Abstract Background Chromatin-based transcriptional silencing is often described as a stochastic process, largely because of the mosaic expression observed in position effect variegation (PEV), where a euchromatic reporter gene is silenced in some cells as a consequence of juxtaposition with heterochromatin. High levels of variation in PEV phenotypes are commonly observed in reporter stocks. To ascertain whether background mutations are the major contributors to this variation, we asked how much of the variation is determined by genetic variants segregating in the population, examining both the level and pattern of expression using the fruit fly, Drosophila melanogaster, as the model. Results Using selective breeding of a fourth chromosome PEV reporter line, 39C-12, we isolated two inbred lines exhibiting contrasting degrees of variegation (A1: low expression, D1: high expression). Within each inbred population, remarkable similarity is observed in the degree of variegation: 90% of the variation between the two inbred lines in the degree of silencing can be explained by genotype. Further analyses suggest that this result reflects the combined effect of multiple independent trans-acting loci. While the initial observations are based on a PEV phenotype scored in the fly eye (hsp70-white reporter), similar degrees of silencing were observed using a beta-gal reporter scored across the whole fly. Further, the pattern of variegation becomes almost identical within each inbred line; significant pigment enrichment in the same quadrant of the eye was found for both A1 and D1 lines despite different degrees of expression. Conclusions The results indicate that background genetic variants play the major role in determining the variable degrees of PEV commonly observed in laboratory stocks. Interestingly, not only does the degree of variegation become consistent in inbred lines, the patterns of variegation also appear similar. Combining these observations with the spreading model for local heterochromatin formation, we propose an augmented stochastic model to describe PEV in which the genetic background drives the overall level of silencing, working with the cell lineage-specific regulatory environment to determine the on/off probability at the reporter locus in each cell. This model acknowledges cell type-specific events in the context of broader genetic impacts on heterochromatin formation.


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 277-292 ◽  
Author(s):  
D F Eberl ◽  
B J Duyf ◽  
A J Hilliker

Abstract Constitutive heterochromatic regions of chromosomes are those that remain condensed through most or all of the cell cycle. In Drosophila melanogaster, the constitutive heterochromatic regions, located around the centromere, contain a number of gene loci, but at a much lower density than euchromatin. In the autosomal heterochromatin, the gene loci appear to be unique sequence genes interspersed among blocks of highly repeated sequences. Euchromatic genes do not function well when brought into the vicinity of heterochromatin (position-effect variegation). We test the possibility that the blocks of centromeric heterochromatin provide an environment essential for heterochromatic gene function. To assay directly the functional requirement of autosomal heterochromatic genes to reside in heterochromatin, the rolled (rl) gene, which is normally located deep in chromosome 2R heterochromatin, was relocated within small blocks of heterochromatin to a variety of euchromatic positions by successive series of chromosomal rearrangements. The function of the rl gene is severely affected in rearrangements in which the rl gene is isolated in a small block of heterochromatin, and these position effects can be reverted by rearrangements which bring the rl gene closer to any large block of autosomal or X chromosome heterochromatin. There is some evidence that five other 2R heterochromatic genes are also affected among these rearrangements. These findings demonstrate that the heterochromatic genes, in contrast to euchromatic genes whose function is inhibited by relocation to heterochromatin, require proximity to heterochromatin to function properly, and they argue strongly that a major function of the highly repeated satellite DNA, which comprises most of the heterochromatin, is to provide this heterochromatic environment.


Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1675-1685
Author(s):  
Brenda L Newman ◽  
James R Lundblad ◽  
Yang Chen ◽  
Sarah M Smolik

Abstract Control of chromosome structure is important in the regulation of gene expression, recombination, DNA repair, and chromosome stability. In a two-hybrid screen for proteins that interact with the Drosophila CREB-binding protein (dCBP), a known histone acetyltransferase and transcriptional coactivator, we identified the Drosophila homolog of a yeast chromatin regulator, Sir2. In yeast, Sir2 silences genes via an intrinsic NAD+-dependent histone deacetylase activity. In addition, Sir2 promotes longevity in yeast and in Caenorhabditis elegans. In this report, we characterize the Drosophila Sir2 (dSir2) gene and its product and describe the generation of dSir2 amorphic alleles. We found that dSir2 expression is developmentally regulated and that dSir2 has an intrinsic NAD+-dependent histone deacetylase activity. The dSir2 mutants are viable, fertile, and recessive suppressors of position-effect variegation (PEV), indicating that, as in yeast, dSir2 is not an essential function for viability and is a regulator of heterochromatin formation and/or function. However, mutations in dSir2 do not shorten life span as predicted from studies in yeast and worms.


Development ◽  
1998 ◽  
Vol 125 (20) ◽  
pp. 4055-4066 ◽  
Author(s):  
K. Stankunas ◽  
J. Berger ◽  
C. Ruse ◽  
D.A. Sinclair ◽  
F. Randazzo ◽  
...  

The Polycomb group of genes in Drosophila are homeotic switch gene regulators that maintain homeotic gene repression through a possible chromatin regulatory mechanism. The Enhancer of Polycomb (E(Pc)) gene of Drosophila is an unusual member of the Polycomb group. Most PcG genes have homeotic phenotypes and are required for repression of homeotic loci, but mutations in E(Pc) exhibit no homeotic transformations and have only a very weak effect on expression of Abd-B. However, mutations in E(Pc) are strong enhancers of mutations in many Polycomb group genes and are also strong suppressors of position-effect variegation, suggesting that E(Pc) may have a wider role in chromatin formation or gene regulation than other Polycomb group genes. E(Pc) was cloned by transposon tagging, and encodes a novel 2023 amino acid protein with regions enriched in glutamine, alanine and asparagine. E(Pc) is expressed ubiquitously in Drosophila embryogenesis. E(Pc) is a chromatin protein, binding to polytene chromosomes at about 100 sites, including the Antennapedia but not the Bithorax complex, 29% of which are shared with Polycomb-binding sites. Surprisingly, E(Pc) was not detected in the heterochromatic chromocenter. This result suggests that E(Pc) has a functional rather than structural role in heterochromatin formation and argues against the heterochromatin model for PcG function. Using homology cloning techniques, we identified a mouse homologue of E(Pc), termed Epc1, a yeast protein that we name EPL1, and as well as additional ESTs from Caenorhabditis elegans, mice and humans. Epc1 shares a long, highly conserved domain in its amino terminus with E(Pc) that is also conserved in yeast, C. elegans and humans. The occurrence of E(Pc) across such divergent species is unusual for both PcG proteins and for suppressors of position-effect variegation, and suggests that E(Pc) has an important role in the regulation of chromatin structure in eukaryotes.


1980 ◽  
Vol 36 (1) ◽  
pp. 41-56 ◽  
Author(s):  
P. T. Shukla ◽  
C. Auerbach

SUMMARYIn the course of an X-ray experiment, the normal allele of forked was transposed to the second chromosome, where it acts as a suppressor of forked. In this position, which is near the centromere, the duplication (Dp-f+) is subject to a variegated position effect. This was studied in its dependence on the hetero-euchromatin balance; the results agree with and extend those found for other position effects. In addition, we found regional preferences for variegation in the individual flies. The most interesting aspect of Dp-f+ is its tendency to transpose either to the homologous second chromosome or to Chromosome IV. In the latter position, Dp-f+ acts as a dominant near-lethal, so that the apparent selectivity of insertion sites is at least in part due to deleterious effects at insertion sites other than its original one. In a new, and presumably, centromere-far position of Dp-f+ on Chromosome II the variegated position effect disappeared and transposition was reduced in frequency or wholly abolished. The frequency of losses of Dp-f+ approximately equalled that of transpositions. Since there is good evidence that transpositions occurred pre-meiotically, the apparent losses of Dp-f+ may have been due to meiotic segregation separating the loss from the new insertion.


2019 ◽  
Author(s):  
Sidney H. Wang ◽  
Sarah C.R. Elgin

AbstractBackgroundChromatin-based transcriptional silencing is often described as a stochastic process, largely because of the mosaic expression observed in position effect variegation (PEV), where a euchromatic reporter gene is juxtaposed with heterochromatin. Here we closely examine the impact of genetic background on PEV phenotypes in the fruit fly, Drosophila melanogaster.ResultsUsing consecutive generations of selective breeding, we isolated, from a single laboratory population, two inbred lines exhibiting contrasting degrees of variegation (A1: low expression, D1: high expression). Within each inbred population, remarkable similarity is observed in both the degree and the pattern of variegation. 89.63% of the differences between the two inbred lines in the degree of silencing can be explained by genotype, while a modest but significant sex effect is also observed. Further analyses of the PEV phenotype in the progeny of crosses between A1 and D1 suggest that the genotypic effect is the result of the combined effect of multiple independent trans-acting loci. While the initial observations are based on a PEV phenotype scored in the fly eye (hsp70-white reporter), similar degrees of silencing were observed using a beta-gal reporter that can be scored across the whole fly. The pattern of variegating hsp70-white expression among individual flies becomes almost identical after five generations of inbreeding. Using a reporter inserted into the heterochromatic fourth chromosome, image analysis found significant enrichment of pigmentation in the ventral-posterior quadrant in both the A1 and D1 lines, and in the F1 and F2 progeny produced from a cross between A1 and D1, despite different degrees of expression.ConclusionsCombining these results with the spreading model for local heterochromatin formation, we propose an augmented stochastic model to describe PEV. In this model, the genetic background, which determines the overall level of silencing, works with the cell lineage specific regulatory environment to determine the on/ off probability at the reporter locus in each cell. This model acknowledges cell-type specific events, as well as the general impact of heterochromatin formation.


Genetics ◽  
1998 ◽  
Vol 148 (2) ◽  
pp. 733-741
Author(s):  
Georgette L Sass ◽  
Steven Henikoff

Abstract In Drosophila melanogaster, heterochromatin-induced silencing or position–effect variegation (PEV) of a reporter gene has provided insights into the properties of heterochromatin. Class I modifiers suppress PEV, and class II modifiers enhance PEV when the modifier gene is present in fewer than two doses. We have examined the effects of both class I and class II modifiers on four PEV mutations. These mutations include the inversions In(1)wm4 and In(2R)bwVDe2, which are classical chromosomal rearrangements that typify PEV mutations. The other mutations are a derivative of brownDominant, in which brown+ reporters are inactivated by a large block of heterochromatin, and a P[white+] transposon insertion associated with second chromosome heterochromatin. In general, we find that class I modifiers affect both classical and nonclassical PEV mutations, whereas class II modifiers affect only classical PEV mutations. We suggest that class II modifiers affect chromatin architecture in the vicinity of reporter genes, and only class I modifiers identify proteins that are potentially involved in heterochromatin formation or maintenance. In addition, our observations support a model in which there are different constraints on the process of heterochromatin-induced silencing in classical vs. nonclassical PEV mutations.


Sign in / Sign up

Export Citation Format

Share Document