scholarly journals Edible Flowers of Tagetes erecta L. as Functional Ingredients: Phenolic Composition, Antioxidant and Protective Effects on Caenorhabditis elegans

Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 2002 ◽  
Author(s):  
Cristina Moliner ◽  
Lillian Barros ◽  
Maria Dias ◽  
Víctor López ◽  
Elisa Langa ◽  
...  

Tagetes erecta L. has long been consumed for culinary and medicinal purposes in different countries. The aim of this study was to explore the potential benefits from two cultivars of T. erecta related to its polyphenolic profile as well as antioxidant and anti-aging properties. The phenolic composition was analyzed by LC-DAD-ESI/MSn. Folin-Ciocalteu, DPPH·, and FRAP assays were performed in order to evaluate reducing antiradical properties. The neuroprotective potential was evaluated using the enzymes acetylcholinesterase and monoamine oxidase. Caenorhabditis elegans was used as an in vivo model to assess extract toxicity, antioxidant activity, delayed aging, and reduced β-amyloid toxicity. Both extracts showed similar phenolic profiles and bioactivities. The main polyphenols found were laricitin and its glycosides. No acute toxicity was detected for extracts in the C. elegans model. T. erecta flower extracts showed promising antioxidant and neuroprotective properties in the different tested models. Hence, these results may add some information supporting the possibilities of using these plants as functional foods and/or as nutraceutical ingredients.

2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 509
Author(s):  
Ana M. González-Paramás ◽  
Virginia Brighenti ◽  
Laura Bertoni ◽  
Laura Marcelloni ◽  
Begoña Ayuda-Durán ◽  
...  

Anthocyanins have been associated with several health benefits, although the responsible mechanisms are not well established yet. In the present study, an anthocyanin-rich extract from bilberry (Vaccinium myrtillus L.) was tested in order to evaluate its capacity to modulate reactive oxygen species (ROS) production and resistance to thermally induced oxidative stress, using the nematode Caenorhabditis elegans as an in vivo model. The assays were carried out with the wild-type N2 strain and the mutant strains daf-16(mu86) I and hsf-1(sy441), which were grown in the presence of two anthocyanin extract concentrations (5 and 10 μg/mL in the culture medium) and further subjected to thermal stress. The treatment with the anthocyanin extract at 5 μg/mL showed protective effects on the accumulation of ROS and increased thermal resistance in C. elegans, both in stressed and non-stressed young and aged worms. However, detrimental effects were observed in nematodes treated with 10 μg/mL, leading to a higher worm mortality rate compared to controls, which was interpreted as a hormetic response. These findings suggested that the effects of the bilberry extract on C. elegans might not rely on its direct antioxidant capacity, but other mechanisms could also be involved. Additional assays were performed in two mutant strains with loss-of-function for DAF-16 (abnormal DAuer Formation factor 16) and HSF-1 (Heat Shock Factor 1) transcription factors, which act downstream of the insulin/insulin like growth factor-1 (IGF-1) signaling pathway. The results indicated that the modulation of these factors could be behind the improvement in the resistance against thermal stress produced by bilberry anthocyanins in young individuals, whereas they do not totally explain the effects produced in worms in the post-reproductive development stage. Further experiments are needed to continue uncovering the mechanisms behind the biological effects of anthocyanins in living organisms, as well as to establish whether they fall within the hormesis concept.


2016 ◽  
Vol 258 ◽  
pp. S72-S73
Author(s):  
M.F. Charão ◽  
C. Souto ◽  
N. Brucker ◽  
G. Goethel ◽  
D.S. Ávila ◽  
...  

Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 317-330 ◽  
Author(s):  
O. Bossinger ◽  
E. Schierenberg

The pattern of autofluorescence in the two free-living namatodes Rhabditis dolichura and Caenorhabditis compared. In C. elegans, during later embryogenesis cells develop a typical bluish autofluorescence as illumination, while in Rh. dolichura a strong already present in the unfertilized egg. Using a new,


2019 ◽  
Vol 39 (11) ◽  
Author(s):  
Hua Chen ◽  
Dongxia Liu ◽  
Lan Ge ◽  
Tao Wang ◽  
Zhenzhen Ma ◽  
...  

AbstractCatestatin (CTS), a catecholamine-release inhibitory peptide, exerts pleiotropic cardiac protective effects. Pulmonary embolism caused by deep vein thrombosis involving vascular dysfunction. The present study aims to investigate the effects of CTS on thrombus formation that may inhibit the development of pulmonary embolism and its potential pathway. Acute pulmonary embolism (APE) model was developed as an in vivo model. The effects of CTS on mice with APE were examined. Human pulmonary artery endothelial cells (HPAECs) were pretreated with CTS before thrombin stimulation, and endothelial inflammation and underlying mechanisms were evaluated in vitro. That plasma CTS level was decreased in APE mice, while the number of platelets was significantly increased. The decreased circulating CTS level negatively associated with the number of platelets. CTS administration increased the survival rate of APE mice and protected against microvascular thrombosis in lung. APE-induced the increase in platelets number and plasma von Willebrand factor (VWF) were inhibited by CTS. Platelets from CTS-treated APE mice showed impaired agonist-induced platelets aggregation and spreading. CTS also ameliorated APE-induced the systemic inflammatory response. In in vivo study, thrombin-induced the increase in inflammation, TLR-4 expression and p38 phosphorylation were abrogated by CTS in HPAECs. Furthermore, TLR-4 overexpression inhibited the effect of CTS on VWF release and inflammation in HPAECs. Collectively, CTS increases thrombus resolution by attenuating endothelial inflammation at partially via inhibiting TLR-4-p38 pathway. The present study may provide a novel approach for anti-thrombosis.


2005 ◽  
Vol 73 (11) ◽  
pp. 7236-7242 ◽  
Author(s):  
Creg Darby ◽  
Sandya L. Ananth ◽  
Li Tan ◽  
B. Joseph Hinnebusch

ABSTRACT Yersinia pestis, the cause of bubonic plague, blocks feeding by its vector, the flea. Recent evidence indicates that blockage is mediated by an in vivo biofilm. Y. pestis and the closely related Yersinia pseudotuberculosis also make biofilms on the cuticle of the nematode Caenorhabditis elegans, which block this laboratory animal's feeding. Random screening of Y. pseudotuberculosis transposon insertion mutants with a C. elegans biofilm assay identified gmhA as a gene required for normal biofilms. gmhA encodes phosphoheptose isomerase, an enzyme required for synthesis of heptose, a conserved component of lipopolysaccharide and lipooligosaccharide. A Y. pestis gmhA mutant was constructed and was severely defective for C. elegans biofilm formation and for flea blockage but only moderately defective in an in vitro biofilm assay. These results validate use of the C. elegans biofilm system to identify genes and pathways involved in Y. pestis flea blockage.


2020 ◽  
Vol 11 (5) ◽  
pp. 4525-4534
Author(s):  
Carla Palacios-Gorba ◽  
Raquel Pina ◽  
Miguel Tortajada-Girbés ◽  
Ana Jiménez-Belenguer ◽  
Érica Siguemoto ◽  
...  

Fucoidan effectively reduces H. pylori infection.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Jing Ma ◽  
Xiaoyuan Xu ◽  
Ranran Wang ◽  
Haijing Yan ◽  
Huijuan Yao ◽  
...  

Abstract Background The present study was designed to investigate the protective effects and mechanisms of carnosine on lipopolysaccharide (LPS)-induced injury in Caenorhabditis elegans. Methods C. elegans individuals were stimulated for 24 h with LPS (100 μg/mL), with or without carnosine (0.1, 1, 10 mM). The survival rates and behaviors were determined. The activities of superoxide dismutase (SOD), glutathione reductase (GR), and catalase (CAT) and levels of malondialdehyde (MDA) and glutathione (GSH) were determined using the respective kits. Reverse transcription polymerase chain reaction (RT-PCR) was performed to validate the differential expression of sod-1, sod-2, sod-3, daf-16, ced-3, ced-9, sek-1, and pmk-1. Western blotting was used to determine the levels of SEK1, p38 mitogen-activated protein kinase (MAPK), cleaved caspase3, and Bcl-2. C. elegans sek-1 (km2) mutants and pmk-1 (km25) mutants were used to elucidate the role of the p38 MAPK signaling pathway. Results Carnosine improved the survival of LPS-treated C. elegans and rescued behavioral phenotypes. It also restrained oxidative stress by decreasing MDA levels and increasing SOD, GR, CAT, and GSH levels. RT-PCR results showed that carnosine treatment of wild-type C. elegans up-regulated the mRNA expression of the antioxidant-related genes sod-1, sod-2, sod-3, and daf-16. The expression of the anti-apoptosis-related gene ced-9 and apoptosis-related gene ced-3 was reversed by carnosine. In addition, carnosine treatment significantly decreased cleaved caspase3 levels and increased Bcl-2 levels in LPS-treated C. elegans. Apoptosis in the loss-of-function strains of the p38 MAPK signaling pathway was suppressed under LPS stress; however, the apoptotic effects of LPS were blocked in the sek-1 and pmk-1 mutants. The expression levels of sek-1 and pmk-1 mRNAs were up-regulated by LPS and reversed by carnosine. Finally, the expression of p-p38MAPK and SEK1 was significantly increased by LPS, which was reversed by carnosine. Conclusion Carnosine treatment protected against LPS injury by decreasing oxidative stress and inhibiting apoptosis through the p38 MAPK pathway.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 811
Author(s):  
Cristina Moliner ◽  
Víctor López ◽  
Lillian Barros ◽  
Maria Inês Dias ◽  
Isabel C. F. R. Ferreira ◽  
...  

Rosmarinus officinalis L., commonly known as rosemary, has been largely studied for its wide use as food ingredient and medicinal plant; less attention has been given to its edible flowers, being necessary to evaluate their potential as functional foods or nutraceuticals. To achieve that, the phenolic profile of the ethanolic extract of R. officinalis flowers was determined using LC-DAD-ESI/MSn and then its antioxidant and anti-ageing potential was studied through in vitro and in vivo assays using Caenorhabditis elegans. The phenolic content was 14.3 ± 0.1 mg/g extract, trans rosmarinic acid being the predominant compound in the extract, which also exhibited a strong antioxidant capacity in vitro and increased the survival rate of C. elegans exposed to lethal oxidative stress. Moreover, R. officinalis flowers extended C. elegans lifespan up to 18%. Therefore, these findings support the potential use of R. officinalis flowers as ingredients to develop products with pharmaceutical and/or nutraceutical potential.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marcello Germoglio ◽  
Anna Valenti ◽  
Ines Gallo ◽  
Chiara Forenza ◽  
Pamela Santonicola ◽  
...  

AbstractFanconi Anemia is a rare genetic disease associated with DNA repair defects, congenital abnormalities and infertility. Most of FA pathway is evolutionary conserved, allowing dissection and mechanistic studies in simpler model systems such as Caenorhabditis elegans. In the present study, we employed C. elegans to better understand the role of FA group D2 (FANCD2) protein in vivo, a key player in promoting genome stability. We report that localization of FCD-2/FANCD2 is dynamic during meiotic prophase I and requires its heterodimeric partner FNCI-1/FANCI. Strikingly, we found that FCD-2 recruitment depends on SPO-11-induced double-strand breaks (DSBs) but not RAD-51-mediated strand invasion. Furthermore, exposure to DNA damage-inducing agents boosts FCD-2 recruitment on the chromatin. Finally, analysis of genetic interaction between FCD-2 and BRC-1 (the C. elegans orthologue of mammalian BRCA1) supports a role for these proteins in different DSB repair pathways. Collectively, we showed a direct involvement of FCD-2 at DSBs and speculate on its function in driving meiotic DNA repair.


Sign in / Sign up

Export Citation Format

Share Document