Trithorax regulates multiple homeotic genes in the bithorax and Antennapedia complexes and exerts different tissue-specific, parasegment-specific and promoter-specific effects on each

Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 119-134 ◽  
Author(s):  
T.R. Breen ◽  
P.J. Harte

The trithorax (trx) gene is required for normal development of the body plan in Drosophila embryos and adults. Mutations in trx cause homeotic transformations throughout the body. Genetic studies suggest that trx encodes a positive regulatory factor required throughout development for normal expression of multiple homeotic genes of the bithorax and Antennapedia complexes (BX-C and ANT-C). To determine how trx influences homeotic gene expression, we examined the expression of the BX-C genes Ultrabithorax, abdominal-A, Abdominal-B and the ANT-C genes Antennapedia, Sex combs reduced and Deformed in trx embryos. We show that trx does indeed exert its effects by positively regulating homeotic gene expression and that its effects on expression of individual homeotic genes are complex: each of the BX-C and ANT-C genes examined exhibits different tissue-specific, parasegment-specific and promoter-specific reductions in their expression. This implies that each of these genes have different requirements for trx in different spatial contexts in order to achieve normal expression levels, presumably depending on the promoters involved and the other regulatory factors bound at each of their multiple tissue- and parasegment-specific cis-regulatory sites in different regions of the embryo. These results also imply that those components of homeotic gene expression patterns for which trx is dispensable, require other factors, possibly those encoded by other trithorax-like genes.

Development ◽  
1997 ◽  
Vol 124 (1) ◽  
pp. 149-157 ◽  
Author(s):  
B.T. Rogers ◽  
M.D. Peterson ◽  
T.C. Kaufman

The products of the HOM/Hox homeotic genes form a set of evolutionarily conserved transcription factors that control elaborate developmental processes and specify cell fates in many metazoans. We examined the expression of the ortholog of the homeotic gene Sex combs reduced (Scr) of Drosophila melanogaster in insects of three divergent orders: Hemiptera, Orthoptera and Thysanura. Our data reflect how the conservation and variation of Scr expression has affected the morphological evolution of insects. Whereas the anterior epidermal expression of Scr, in a small part of the posterior maxillary and all of the labial segment, is found to be in common among all four insect orders, the posterior (thoracic) expression domains vary. Unlike what is observed in flies, the Scr orthologs of other insects are not expressed broadly over the first thoracic segment, but are restricted to small patches. We show here that Scr is required for suppression of wings on the prothorax of Drosophila. Moreover, Scr expression at the dorsal base of the prothoracic limb in two other winged insects, crickets (Orthoptera) and milkweed bugs (Hemiptera), is consistent with Scr acting as a suppressor of prothoracic wings in these insects. Scr is also expressed in a small patch of cells near the basitarsal-tibial junction of milkweed bugs, precisely where a leg comb develops, suggesting that Scr promotes comb formation, as it does in Drosophila. Surprisingly, the dorsal prothoracic expression of Scr is also present in the primitively wingless firebrat (Thysanura) and the leg patch is seen in crickets, which have no comb. Mapping both gene expression patterns and morphological characters onto the insect phylogenetic tree demonstrates that in the cases of wing suppression and comb formation the appearance of expression of Scr in the prothorax apparently precedes these specific functions.


Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1121-1128 ◽  
Author(s):  
A. Abzhanov ◽  
T.C. Kaufman

Homeotic genes are known to be involved in patterning morphological structures along the antero-posterior axis of insects and vertebrates. Because of their important roles in development, changes in the function and expression patterns of homeotic genes may have played a major role in the evolution of different body plans. For example, it has been proposed that during the evolution of several crustacean lineages, changes in the expression patterns of the homeotic genes Ultrabithorax and abdominal-A have played a role in transformation of the anterior thoracic appendages into mouthparts termed maxillipeds. This homeotic-like transformation is recapitulated at the late stages of the direct embryonic development of the crustacean Porcellio scaber (Oniscidea, Isopoda). Interestingly, this morphological change is associated with apparent novelties both in the transcriptional and post-transcriptional regulation of the Porcellio scaber ortholog of the Drosophila homeotic gene, Sex combs reduced (Scr). Specifically, we find that Scr mRNA is present in the second maxillary segment and the first pair of thoracic legs (T1) in early embryos, whereas protein accumulates only in the second maxillae. In later stages, however, high levels of SCR appear in the T1 legs, which correlates temporally with the transformation of these appendages into maxillipeds. Our observations provide further insight into the process of the homeotic leg-to-maxilliped transformation in the evolution of crustaceans and suggest a novel regulatory mechanism for this process in this group of arthropods.


Development ◽  
1994 ◽  
Vol 120 (9) ◽  
pp. 2629-2636 ◽  
Author(s):  
A. Lonie ◽  
R. D'Andrea ◽  
R. Paro ◽  
R. Saint

The Polycomblike gene of Drosophila melanogaster, a member of the Polycomb Group of genes, is required for the correct spatial expression of the homeotic genes of the Antennapaedia and Bithorax Complexes. Mutations in Polycomb Group genes result in ectopic homeotic gene expression, indicating that Polycomb Group proteins maintain the transcriptional repression of specific homeotic genes in specific tissues during development. We report here the isolation and molecular characterisation of the Polycomblike gene. The Polycomblike transcript encodes an 857 amino acid protein with no significant homology to other proteins. Antibodies raised against the product of this open reading frame were used to show that the Polycomblike protein is found in all nuclei during embryonic development. Antibody staining also revealed that the Polycomblike protein is found on larval salivary gland polytene chromosomes at about 100 specific loci, the same loci to which the Polycomb and polyhomeotic proteins, two other Polycomb Group proteins, are found. These data add further support for a model in which Polycomb Group proteins form multimeric protein complexes at specific chromosomal loci to repress transcription at those loci.


1997 ◽  
Vol 17 (8) ◽  
pp. 4707-4717 ◽  
Author(s):  
O N Denisenko ◽  
K Bomsztyk

The heterogeneous nuclear ribonucleoprotein K protein represents a novel class of proteins that may act as docking platforms that orchestrate cross-talk among molecules involved in signal transduction and gene expression. Using a fragment of K protein as bait in the yeast two-hybrid screen, we isolated a cDNA that encodes a protein whose primary structure has extensive similarity to the Drosophila melanogaster extra sex combs (esc) gene product, Esc, a putative silencer of homeotic genes. The cDNA that we isolated is identical to the cDNA of the recently positionally cloned mouse embryonic ectoderm development gene, eed. Like Esc, Eed contains six WD-40 repeats in the C-terminal half of the protein and is thought to repress homeotic gene expression during mouse embryogenesis. Eed binds to K protein through a domain in its N terminus, but interestingly, this domain is not found in the Drosophila Esc. Gal4-Eed fusion protein represses transcription of a reporter gene driven by a promoter that contains Gal4-binding DNA elements. Eed also represses transcription when recruited to a target promoter by Gal4-K protein. Point mutations within the eed gene that are responsible for severe embryonic development abnormalities abolished the transcriptional repressor activity of Eed. Results of this study suggest that Eed-restricted homeotic gene expression during embryogenesis reflects the action of Eed as a transcriptional repressor. The Eed-mediated transcriptional effects are likely to reflect the interaction of Eed with multiple molecular partners, including K protein.


Development ◽  
1990 ◽  
Vol 110 (4) ◽  
pp. 1041-1050 ◽  
Author(s):  
G.E. Panganiban ◽  
R. Reuter ◽  
M.P. Scott ◽  
F.M. Hoffmann

The decapentaplegic (dpp) gene product, a member of the transforming growth factor-beta family, is required in Drosophila embryos for normal gastrulation and the establishment of dorsal-ventral polarity in the embryo. dpp is also expressed at specific positions in the visceral mesoderm along the developing midgut. We find that mutations that eliminate the visceral mesoderm expression of dpp lead to defects in midgut morphogenesis and alter the spatially localized expression of the homeotic genes Sex combs reduced (Scr), Ultrabithorax (Ubx), and Antennapedia (Antp) in the visceral mesoderm. The extracellular dpp protein migrates from the visceral mesoderm across the apposing endodermal cell layer in a region of the endoderm that expresses the homeotic gene labial (lab). Mesodermal expression of dpp is required for the expression of lab in these endodermal cells indicating that dpp mediates an inductive interaction between the two germ layers. We propose that extracellular dpp protein regulates gut morphogenesis, in part, by regulating homeotic gene expression in the visceral mesoderm and endoderm of the developing midgut.


Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1983-1995 ◽  
Author(s):  
J. Castelli-Gair ◽  
S. Greig ◽  
G. Micklem ◽  
M. Akam

Homeotic genes confer identity to the different segments of Drosophila. These genes are expressed in many cell types over long periods of time. To determine when the homeotic genes are required for specific developmental events we have expressed the Ultrabithorax, abdominal-A and Abdominal-Bm proteins at different times during development using the GAL4 targeting technique. We find that early transient homeotic gene expression has no lasting effects on the differentiation of the larval epidermis, but it switches the fate of other cell types irreversibly (e.g. the spiracle primordia). We describe one cell type in the peripheral nervous system that makes sequential, independent responses to homeotic gene expression. We also provide evidence that supports the hypothesis of in vivo competition between the bithorax complex proteins for the regulation of their down-stream targets.


Development ◽  
1994 ◽  
Vol 120 (11) ◽  
pp. 3205-3212 ◽  
Author(s):  
R.S. Mann

The homeotic genes of Drosophila are expressed in overlapping domains along the anterior-to-posterior axis and specify the distinct morphological patterns of each parasegment. Within single parasegments, the levels of homeotic gene expression are often modulated, in part because of cross-regulation by other homeotic gene products. However, the functional significance of different levels of homeotic gene expression is unclear. Here modulations in Ultrabithorax (Ubx) expression within parasegment 6 are examined. Specifically, Ubx is shown to be down-regulated in the posterior compartment of this parasegment by engrailed (en). The significance of Ubx repression by en was demonstrated by characterizing the expression of the Ubx target gene, Distal-less (Dll). In the posterior compartment of parasegment 6, Dll is normally expressed in a small cluster of cells. If Ubx is expressed uniformly via a heat-shock promoter, Dll is inappropriately repressed in these posterior compartment cells. In the anterior compartment of parasegment 6, Dll is normally repressed by high levels of Ubx. However, if en is expressed uniformly via a heat-shock promoter, Ubx is repressed and Dll is derepressed. Because Dll is required for the development of larval sensory structures, these results demonstrate that en-mediated repression of Ubx in the posterior compartment is necessary for the morphology of parasegment 6. Thus, different levels of homeotic gene expression can be important for their segmental patterning functions.


Development ◽  
1988 ◽  
Vol 104 (Supplement) ◽  
pp. 123-133 ◽  
Author(s):  
Michael Akam ◽  
Iain Dawson ◽  
Guy Tear

Homeotic genes control the diversity of segment development, but the domains of action of homeotic genes do not obviously correspond with the major morphological subdivisions of the insect body. We suggest that this lack of correspondence is misleading, because the spatial domains defined by genetics mask fundamental differences in the roles played by individual genes in different regions. In one or more parasegments, each homeotic gene is expressed `metamerically'; that is, it is expressed from blastoderm stages onwards in all or virtually all cells of the parasegment primordium. Elsewhere, the same homeotic gene may be deployed adventitiously, only in subsets of cells and at later stages of development. We argue that the early `metameric' domains of gene expression do correlate with the major morphological subdivisions of the fly. This suggests a relatively direct relationship between the expression of particular homeotic genes and the establishment of the `ground plan' that characterizes segments within each major tagma of the body. This relationship allows us to suggest a scenario for the evolution of homeotic genes in relation to the evolving morphological organization of the arthropod body plan in the insect-myriapod lineage.


Sign in / Sign up

Export Citation Format

Share Document