Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds

Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 247-261 ◽  
Author(s):  
B.A. Parr ◽  
M.J. Shea ◽  
G. Vassileva ◽  
A.P. McMahon

Mutation and expression studies have implicated the Wnt gene family in early developmental decision making in vertebrates and flies. In a detailed comparative analysis, we have used in situ hybridization of 8.0- to 9.5-day mouse embryos to characterize expression of all ten published Wnt genes in the central nervous system (CNS) and limb buds. Seven of the family members show restricted expression patterns in the brain. At least three genes (Wnt-3, Wnt-3a, and Wnt-7b) exhibit sharp boundaries of expression in the forebrain that may predict subdivisions of the region later in development. In the spinal cord, Wnt-1, Wnt-3, and Wnt-3a are expressed dorsally, Wnt-5a, Wnt-7a, and Wnt-7b more ventrally, and Wnt-4 both dorsally and in the floor plate. In the forelimb primordia, Wnt-3, Wnt-4, Wnt-6 and Wnt-7b are expressed fairly uniformly throughout the limb ectoderm. Wnt-5a RNA is distributed in a proximal to distal gradient through the limb mesenchyme and ectoderm. Along the limb's dorsal-ventral axis, Wnt-5a is expressed in the ventral ectoderm and Wnt-7a in the dorsal ectoderm. We discuss the significance of these patterns of restricted and partially overlapping domains of expression with respect to the putative function of Wnt signalling in early CNS and limb development.

2020 ◽  
Author(s):  
Diane Henry ◽  
Christina Joselevitch ◽  
Gary G. Matthews ◽  
Lonnie P. Wollmuth

ABSTRACTSynaptotagmins belong to a large family of proteins. While various synaptotagmins have been implicated as Ca2+ sensors for vesicle replenishment and release at conventional synapses, their roles at retinal ribbon synapses remain incompletely understood. Zebrafish is a widely used experimental model for retinal research. We therefore investigated the homology between human, rat, mouse, and zebrafish synaptotagmins 1 to 10 using a bioinformatics approach. We also characterized the expression and distribution of various synaptotagmin (syt) genes in the zebrafish retina using RT-PCR and in situ hybridization, focusing on the family members whose products likely underlie Ca2+-dependent exocytosis in the central nervous system (synaptotagmins 1, 2, 5 and 7). We find that most zebrafish synaptotagmins are well conserved and can be grouped in the same classes as mammalian synaptotagmins, based on crucial amino acid residues needed for coordinating Ca2+ binding and determining phospholipid binding affinity. The only exception is synaptotagmin 1b, which lacks 34 amino acid residues in the C2B domain and is therefore unlikely to bind Ca2+ there. Additionally, the products of zebrafish syt5a and syt5b genes share identity with mammalian class 1 and 5 synaptotagmins. Zebrafish syt1, syt2, syt5 and syt7 paralogues are found in the zebrafish brain, eye, and retina, excepting syt1b, which is only present in the brain. The complementary expression pattern of the remaining paralogues in the retina suggests that syt1a and syt5a may underlie synchronous release and syt7a and syt7b may mediate asynchronous release or other Ca2+ dependent processes in different types of retinal neurons.


Development ◽  
1990 ◽  
Vol 109 (2) ◽  
pp. 329-339 ◽  
Author(s):  
S.J. Gaunt ◽  
P.L. Coletta ◽  
D. Pravtcheva ◽  
P.T. Sharpe

A putative mouse homeobox gene (Hox-3.4) was previously identified 4kb downstream of the Hox-3.3 (Hox-6.1)* gene (Sharpe et al. 1988). We have now sequenced the Hox-3.4 homeobox region. The predicted amino acid sequence shows highest degree of homology in the mouse with Hox-1.3 and -2.1. This, together with similarities in the genomic organisation around these three genes, suggests that they are comembers of a subfamily, derived from a common ancestor. Hox-3.4 appears to be a homologue of the Xenopus Xlhbox5 and human cp11 genes (Fritz and De Robertis, 1988; Simeone et al. 1988). Using a panel of mouse-hamster somatic cell hybrids we have mapped the Hox-3.4 gene to chromosome 15. From the results of in situ hybridization experiments, we describe the distribution of Hox-3.4 transcripts within the 12 1/2 day mouse embryo, and we compare this with the distributions of transcripts shown by seven other members of the Hox gene network. We note three consistencies that underlie the patterns of expression shown by Hox-3.4. First, the anterior limits of Hox-3.4 transcripts in the embryo are related to the position of the Hox-3.4 gene within the Hox-3 locus. Second, the anterior limits of Hox-3.4 expression within the central nervous system are similar to those shown by subfamily homologues Hox-2.1 and Hox-1.3, although the tissue-specific patterns of expression for these three genes show many differences. Third, the patterns of Hox-3.4 expression within the spinal cord and the testis are very similar to those shown by a neighbouring Hox-3 gene (Hox-3.3), but they are quite different from those shown by Hox-1 genes (Hox-1.2, -1.3 and -1.4).


Development ◽  
1998 ◽  
Vol 125 (3) ◽  
pp. 351-357 ◽  
Author(s):  
C. Hayes ◽  
J.M. Brown ◽  
M.F. Lyon ◽  
G.M. Morriss-Kay

The mouse mutant Doublefoot (Dbf) shows preaxial polydactyly of all four limbs. We have analysed limb development in this mutant with respect to morphogenesis, gene expression patterns and ectopic polarising activity. The results reveal a gain-of-function mutation at a locus that mediates pattern formation in the developing limb. Shh expression is identical with that of wild-type embryos, i.e. there is no ectopic expression. However, mesenchyme from the anterior aspects of Dbf/+ mutant limb buds, when transplanted to the anterior side of chick wing buds, induces duplication of the distal skeletal elements. Mid-distal mesenchymal transplants from early, but not later, Dbf/+ limb buds are also able to induce duplication. This demonstration of polarising activity in the absence of Shh expression identifies the gene at the Dbf locus as a new genetic component of the Shh signalling pathway, which (at least in its mutated form) is able to activate signal transduction independently of Shh. The mutant gene product is sufficient to fulfil the signalling properties of Shh including upregulation of the direct Shh target genes Ptc and Gli, and induction of the downstream target genes Bmp2, Fgf4 and Hoxd13. The expression domains of all these genes extend from their normal posterior domains into the anterior part of the limb bud without being focused on a discrete ectopic site. These observations dissociate polarising activity from Shh gene expression in the Dbf/+ limb bud. We suggest that the product of the normal Dbf gene is a key active constituent of the polarising region, possibly acting in the extracellular compartment.


1997 ◽  
Vol 45 (5) ◽  
pp. 657-662 ◽  
Author(s):  
Maha M. Lakkis ◽  
K. Sue O'Shea ◽  
Richard E. Tashian

The spatial expression patterns of the two α-carbonic anhydrase genes, CA VII and CA-RP VIII (called Car7 and Car8 in the mouse) were examined in the mouse brain by in situ hybridization. These two genes are the most highly conserved evolutionarily among the mammalian α-CAs. Both genes showed a similarly wide expression pattern in the brain. In the cerebrum, mRNA expression was detected in the pia, choroid plexus, and neurons of the cortical layer, thalamus, and medial habenulae. A high level of expression appeared in the pyramidal and granular cells of the hippocampus. In the cerebellum, both Car7 and Car8 were transcribed to different degrees in the Purkinje cells, and a lower expression level occured in the molecular and granular cell layers. Transcription signals for both genes were excluded from the white matter regions.


2001 ◽  
Vol 21 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Alexander Flügel ◽  
Gerhard Hager ◽  
Andrea Horvat ◽  
Christoph Spitzer ◽  
Gamal M. A. Singer ◽  
...  

Direct injury of the brain is followed by inflammatory responses regulated by cytokines and chemoattractants secreted from resident glia and invading cells of the peripheral immune system. In contrast, after remote lesion of the central nervous system, exemplified here by peripheral transection or crush of the facial and hypoglossal nerve, the locally observed inflammatory activation is most likely triggered by the damaged cells themselves, that is, the injured neurons. The authors investigated the expression of the chemoattractants monocyte chemoattractant protein MCP-1, regulation on activation normal T-cell expressed and secreted (RANTES), and interferon-gamma inducible protein IP10 after peripheral nerve lesion of the facial and hypoglossal nuclei. In situ hybridization and immunohistochemistry revealed an induction of neuronal MCP-1 expression within 6 hours postoperation, reaching a peak at 3 days and remaining up-regulated for up to 6 weeks. MCP-1 expression was almost exclusively confined to neurons but was also present on a few scattered glial cells. The authors found no alterations in the level of expression and cellular distribution of RANTES or IP10, which were both confined to neurons. Protein expression of the MCP-1 receptor CCR2 did not change. MCP-1, expressed by astrocytes and activated microglia, has been shown to be crucial for monocytic, or T-cell chemoattraction, or both. Accordingly, expression of MCP-1 by neurons and its corresponding receptor in microglia suggests that this chemokine is involved in neuron and microglia interaction.


2020 ◽  
Vol 10 (4) ◽  
pp. 288-299
Author(s):  
Pankaj Kumar ◽  
Varun Garg ◽  
Neeraj Mittal

Nose to brain drug delivery system is an interesting approach to deliver a drug directly in the brain through the nose. Intranasal drug delivery is very beneficial because it avoids first-pass metabolism and achieves a greater concentration of drugs in the central nervous system (CNS) at a low dose. This delivery system is used for the treatment of various neurological disorders such as Parkinson's disease, Alzheimer's disease, schizophrenia, dementia, brain cancer, etc. To treat such types of diseases, different formulations like nanoparticles (NPs), microemulsions, in situ gel, etc. can be used depending on the physiochemical properties of the drug. In this review, some essential characteristics related to the delivery of nose to the brain and their possible obstacles are underlined, which include anatomy and physiology of nose to brain delivery. This review also summarizes innovations from the past three to five years.


Development ◽  
1991 ◽  
Vol 112 (3) ◽  
pp. 791-806 ◽  
Author(s):  
S. Mackem ◽  
K.A. Mahon

Homeobox genes play a key role in specifying the segmented body plan of Drosophila, and recent work suggests that at least several homeobox genes may play a regulatory role during vertebrate limb morphogenesis. We have used degenerate oligonucleotide primers from highly conserved domains in the homeobox motif to amplify homeobox gene segments from chick embryo limb bud cDNAs using the polymerase chain reaction. Expression of a large number of homeobox genes (at least 17) is detected using this approach. One of these genes contains a novel homeobox loosely related to the Drosophila Abdominal B class, and was further analyzed by determining its complete coding sequence and evaluating its expression during embryogenesis by in situ hybridization. Based on sequence and expression patterns, we have designated this gene as Ghox 4.7 and believe that it is the chick homologue of the murine Hox 4.7 gene (formerly Hox 5.6). Ghox 4.7 is expressed primarily in limb buds during development and shows a striking spatial restriction to the posterior zone of the limb bud, suggesting a role in specifying anterior-posterior pattern formation. In chick, this gene also displays differences in expression between wing and leg buds, raising the possibility that it may participate in specifying limb-type identity.


Author(s):  
Katarzyna Chamera ◽  
Magdalena Szuster-Głuszczak ◽  
Agnieszka Basta-Kaim

AbstractSchizophrenia has a complex and heterogeneous molecular and clinical picture. Over the years of research on this disease, many factors have been suggested to contribute to its pathogenesis. Recently, the inflammatory processes have gained particular interest in the context of schizophrenia due to the increasing evidence from epidemiological, clinical and experimental studies. Within the immunological component, special attention has been brought to chemokines and their receptors. Among them, CX3C chemokine receptor 1 (CX3CR1), which belongs to the family of seven-transmembrane G protein-coupled receptors, and its cognate ligand (CX3CL1) constitute a unique system in the central nervous system. In the view of regulation of the brain homeostasis through immune response, as well as control of microglia reactivity, the CX3CL1–CX3CR1 system may represent an attractive target for further research and schizophrenia treatment. In the review, we described the general characteristics of the CX3CL1–CX3CR1 axis and the involvement of this signaling pathway in the physiological processes whose disruptions are reported to participate in mechanisms underlying schizophrenia. Furthermore, based on the available clinical and experimental data, we presented a guide to understanding the implication of the CX3CL1–CX3CR1 dysfunctions in the course of schizophrenia.


Endocrinology ◽  
2008 ◽  
Vol 149 (12) ◽  
pp. 5996-6005 ◽  
Author(s):  
Yuka Toyoshima ◽  
Christopher Monson ◽  
Cunming Duan ◽  
Yingjie Wu ◽  
Chuan Gao ◽  
...  

Insulin receptor (IR) signaling is considered to be important in growth and development in addition to its major role in metabolic homeostasis. The metabolic role of insulin in carbohydrate and lipid metabolism is extensively studied. In contrast, the role of IR activation during embryogenesis is less understood. To address this, we examined the function of the IR during zebrafish development. Zebrafish express two isoforms of IR (insra and insrb). Both isoforms were cloned and show high homology to the human insulin receptor and can functionally substitute for the human IR in fibroblasts derived from insr gene-deleted mice. Gene expression studies reveal that these receptors are expressed at moderate levels in the central nervous system during development. Morpholino-mediated selective knockdown of each of the IR isoforms causes growth retardation and profound morphogenetic defects in the brain and eye. These results clearly demonstrate that IR signaling plays essential roles in vertebrate embryogenesis and growth.


1990 ◽  
Vol 172 (4) ◽  
pp. 1127-1132 ◽  
Author(s):  
S Perlman ◽  
G Evans ◽  
A Afifi

Previous results suggested that, after intranasal inoculation, mouse hepatitis virus (MHV), a neurotropic coronavirus, entered the central nervous system (CNS) via the olfactory and trigeminal nerves. To prove this hypothesis, the effect of interruption of the olfactory pathway on spread of the virus was studied using in situ hybridization. Unilateral surgical ablation of this pathway prevented spread of the virus via the olfactory tract on the side of the lesion. MHV RNA could be detected, however, at distal sites on the operated side, indicating that the virus spread via well-described circuits involving the anterior commissure from the control (intact) side of the brain. Viral transport via the trigeminal nerve was not affected by removal of the olfactory bulb, showing that the surgical procedure was specific for the olfactory pathway. These results prove conclusively that MHV gains entry to the CNS via a transneuronal route, and spreads to additional sites in the brain via known neuroanatomic pathways.


Sign in / Sign up

Export Citation Format

Share Document