Inserting the Ftz homeodomain into engrailed creates a dominant transcriptional repressor that specifically turns off Ftz target genes in vivo

Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1801-1813 ◽  
Author(s):  
A. John ◽  
S.T. Smith ◽  
J.B. Jaynes

The Engrailed homeodomain protein is an ‘active’ or dominant transcriptional repressor in cultured cells. In contrast, the Fushi Tarazu homeodomain protein is an activator, both in cultured cells and in Drosophila embryos, where it activates several known target genes, including its own gene. This auto-activation has been shown to depend on targeting to a fushi tarazu enhancer by the Fushi Tarazu homeodomain. We combined Fushi Tarazu targeting and Engrailed active repression in a chimeric regulator, EFE. When EFE is ubiquitously expressed, it overrides endogenous Fushi Tarazu and causes a fushi tarazu mutant phenotype. Normal Fushi Tarazu target genes are affected as they are in fushi tarazu mutants. One such target gene is repressed by EFE even where Fushi Tarazu is not expressed, suggesting that the repression is active. This is confirmed by showing that the in vivo activity of EFE depends on a domain that is required for active repression in culture. A derivative that lacks this domain, while it cannot repress the endogenous fushi tarazu gene, can still reduce the activity of the fushi tarazu autoregulatory enhancer, suggesting that it competes with endogenous Fushi Tarazu for binding sites in vivo. However, this passive repression is much less effective than active repression.

1997 ◽  
Vol 17 (11) ◽  
pp. 6700-6707 ◽  
Author(s):  
C D Wolfgang ◽  
B P Chen ◽  
J L Martindale ◽  
N J Holbrook ◽  
T Hai

Recently, we demonstrated that the function of ATF3, a stress-inducible transcriptional repressor, is negatively regulated by a bZip protein, gadd153/Chop10. In this report, we present evidence that ATF3 can repress the expression of its own inhibitor, gadd153/Chop10. First, ATF3 represses a chloramphenicol acetyltransferase reporter gene driven by the gadd153/Chop10 promoter when assayed by a transfection assay in vivo and a transcription assay in vitro. Second, the gadd153/Chop10 promoter contains two functionally important binding sites for ATF3: an AP-1 site and a C/EBP-ATF composite site, a previously unidentified binding site for ATF3. The absence of either site reduces the ability of ATF3 to repress the promoter. Third, overexpression of ATF3 by transient transfection results in a reduction of the endogenous gadd153/Chop10 mRNA level. Fourth, as described previously, ATF3 is induced in the liver upon CCl4 treatment. Intriguingly, we show in this report that gadd153/Chop10 mRNA is not present in areas where ATF3 is induced. Taken together, these results strongly suggest that ATF3 represses the expression of gadd153/Chop10. The mutual negative regulation between ATF3 and gadd153/Chop10 is discussed.


1994 ◽  
Vol 14 (5) ◽  
pp. 3364-3375
Author(s):  
S D Hanes ◽  
G Riddihough ◽  
D Ish-Horowicz ◽  
R Brent

We examined DNA site recognition by Bicoid and its importance for pattern formation in developing Drosophila embryos. Using altered DNA specificity Bicoid mutants and appropriate reporter genes, we show that Bicoid distinguishes among related DNA-binding sites in vivo by a specific contact between amino acid 9 of its recognition alpha-helix (lysine 50 of the homeodomain) and bp 7 of the site. This result is consistent with our earlier results using Saccharomyces cerevisiae but differs from that predicted by crystallographic analysis of another homeodomain-DNA interaction. Our results also demonstrate that Bicoid binds directly to those genes whose transcription it regulates and that the amino acid 9 contact is necessary for Bicoid to direct anterior pattern formation. In both Drosophila embryos and yeast cells, Bicoid requires multiple binding sites to activate transcription of target genes. We find that the distance between binding sites is critical for Bicoid activation but that, unexpectedly, this critical distance differs between Drosophila and S. cerevisiae. This result suggests that Bicoid activation in Drosophila might require an ancillary protein(s) not present in S. cerevisiae.


2000 ◽  
Vol 20 (18) ◽  
pp. 6882-6890 ◽  
Author(s):  
Andrew N. Billin ◽  
Hilary Thirlwell ◽  
Donald E. Ayer

ABSTRACT Recent evidence suggests that certain LEF/TCF family members act as repressors in the absence of Wnt signaling. We show here that repression by LEF1 requires histone deacetylase (HDAC) activity. Further, LEF1 associates in vivo with HDAC1, and transcription of a model LEF1-dependent target gene is modulated by the ratio of HDAC1 to β-catenin, implying that repression by LEF1 is mediated by promoter-targeted HDAC. Consistent with this hypothesis, under repression conditions the promoter region of a LEF1 target gene is hypoacetylated. By contrast, when the reporter is activated, its promoter becomes hyperacetylated. Coexpression of β-catenin with LEF1 and HDAC1 results in the formation of a β-catenin/HDAC1 complex. Surprisingly, the enzymatic activity of HDAC1 associated with β-catenin is attenuated. Together, these findings imply that activation of LEF1-dependent genes by β-catenin involves a two-step mechanism. First, HDAC1 is dissociated from LEF1 and its enzymatic activity is attenuated. This first step yields a promoter that is inactive but poised for activation. Second, once HDAC1-dependent repression has been overridden, β-catenin binds LEF1 and the β-catenin–LEF1 complex is competent to activate the expression of downstream target genes.


2004 ◽  
Vol 24 (15) ◽  
pp. 6728-6741 ◽  
Author(s):  
Susan Erster ◽  
Motohiro Mihara ◽  
Roger H. Kim ◽  
Oleksi Petrenko ◽  
Ute M. Moll

ABSTRACT p53 promotes apoptosis in response to death stimuli by transactivation of target genes and by transcription-independent mechanisms. We recently showed that wild-type p53 rapidly translocates to mitochondria in response to multiple death stimuli in cultured cells. Mitochondrial p53 physically interacts with antiapoptotic Bcl proteins, induces Bak oligomerization, permeabilizes mitochondrial membranes, and rapidly induces cytochrome c release. Here we characterize the mitochondrial p53 response in vivo. Mice were subjected to γ irradiation or intravenous etoposide administration, followed by cell fractionation and immunofluorescence studies of various organs. Mitochondrial p53 accumulation occurred in radiosensitive organs like thymus, spleen, testis, and brain but not in liver and kidney. Of note, mitochondrial p53 translocation was rapid (detectable at 30 min in thymus and spleen) and triggered an early wave of marked caspase 3 activation and apoptosis. This caspase 3-mediated apoptosis was entirely p53 dependent, as shown by p53 null mice, and preceded p53 target gene activation. The transcriptional p53 program had a longer lag phase than the rapid mitochondrial p53 program. In thymus, the earliest apoptotic target gene products PUMA, Noxa, and Bax appeared at 2, 4, and 8 h, respectively, while Bid, Killer/DR5, and p53DinP1 remained uninduced even after 20 h. Target gene induction then led to further increase in active caspase 3. Similar biphasic kinetics was seen in cultured human cells. Our results suggest that in sensitive organs mitochondrial p53 accumulation in vivo occurs soon after a death stimulus, triggering a rapid first wave of apoptosis that is transcription independent and may precede a second slower wave that is transcription dependent.


1998 ◽  
Vol 18 (5) ◽  
pp. 2804-2814 ◽  
Author(s):  
Elena N. Tolkunova ◽  
Miki Fujioka ◽  
Masatomo Kobayashi ◽  
Deepali Deka ◽  
James B. Jaynes

ABSTRACT Active transcriptional repression has been characterized as a function of many regulatory factors. It facilitates combinatorial regulation of gene expression by allowing repressors to be dominant over activators under certain conditions. Here, we show that the Engrailed protein uses two distinct mechanisms to repress transcription. One activity is predominant under normal transient transfection assay conditions in cultured cells. A second activity is predominant in an in vivo active repression assay. The domain mediating the in vivo activity (eh1) is highly conserved throughout several classes of homeoproteins and interacts specifically with the Groucho corepressor. While eh1 shows only weak activity in transient transfections, much stronger activity is seen in culture when an integrated target gene is used. In this assay, the relative activities of different repression domains closely parallel those seen in vivo, with eh1 showing the predominant activity. Reducing the amounts of repressor and target gene in a transient transfection assay also increases the sensitivity of the assay to the Groucho interaction domain, albeit to a lesser extent. This suggests that it utilizes rate-limiting components that are relatively low in abundance. Since Groucho itself is abundant in these cells, the results suggest that a limiting component is recruited effectively by the repressor-corepressor complex only on integrated target genes.


Development ◽  
1997 ◽  
Vol 124 (10) ◽  
pp. 2007-2014 ◽  
Author(s):  
S.K. Chan ◽  
H.D. Ryoo ◽  
A. Gould ◽  
R. Krumlauf ◽  
R.S. Mann

The homeodomain proteins encoded by the Hox complex genes do not bind DNA with high specificity. In vitro, Hox specificity can be increased by binding to DNA cooperatively with the homeodomain protein extradenticle or its vertebrate homologs, the pbx proteins (together, the PBC family). Here we show that a two basepair change in a Hox-PBC binding site switches the Hox-dependent expression pattern generated in vivo, from labial to Deformed. The change in vivo correlates with an altered Hox binding specificity in vitro. Further, we identify similar Deformed-PBC binding sites in the Deformed and Hoxb-4 genes and show that they generate Deformed or Hoxb-4 expression patterns in Drosophila and mouse embryos, respectively. These results suggest a model in which Hox-PBC binding sites play an instructive role in Hox specificity by promoting the formation of different Hox-PBC heterodimers in vivo. Thus, the choice of Hox partner, and therefore Hox target genes, depends on subtle differences between Hox-PBC binding sites.


2001 ◽  
Vol 21 (10) ◽  
pp. 3375-3386 ◽  
Author(s):  
Suzanne T. Szak ◽  
Deborah Mays ◽  
Jennifer A. Pietenpol

ABSTRACT Downstream target genes of p53 are thought to mediate its tumor-suppressive activity, but it is unknown whether differential transactivation of these genes is regulated at the level of p53 binding to their promoters. To address this issue, p53 binding in vivo to consensus sites in the p21Waf1, MDM2, and PIG3 promoters was investigated in cells exposed to adriamycin (ADR) or ionizing radiation as well as in an inducible p53 cell line. p53-DNA complexes were cross-linked in vivo by treating the cells with formaldehyde and processed by chromatin immunoprecipitation-PCR. This methodology allowed for the analysis of relevant p53-DNA complexes by preventing redistribution of cellular components upon collection of cell extracts. Increased p53 binding to the p21Waf1, MDM2, and PIG3 promoters occurred within 2 h after p53 activation; however, significant increases in PIG3 transcription did not occur until 15 h after p53 binding. Gel shift analyses indicated that p53 had lower affinity for the consensus binding site in the PIG3 promoters compared to its consensus sites in the p21 and MDM2 genes, which suggests that additional factors may be required to stabilize the interaction of p53 with the PIG3 promoter. Further, acetylated p53 (Lys382) was found in chemically cross-linked complexes at all promoter sites examined after treatment of cells with ADR. In summary, the kinetics of p53 binding in vivo to target gene regulatory regions does not uniformly correlate with target gene mRNA expression for the p53 target genes examined. Our results suggest that target genes with low-affinity p53 binding sites may require additional events and will have delayed kinetics of induction compared to those with high-affinity binding sites.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 277-277
Author(s):  
Huacheng Luo ◽  
Ganqian Zhu ◽  
Tsz Kan Fung ◽  
Yi Qiu ◽  
Mingjiang Xu ◽  
...  

We reported recently that HOXA locus associated lncRNA, HOTTIP, is highly expressed in AML patients carrying MLL rearrangement and NPM1c+ mutations. The expression of HOTTIP positively correlates with posterior HOXA gene expression and poor patient survival. We further demonstrated that HOTTIP acts as an epigenetic regulator to define oncogenic HOXA topologically associated domain (TAD) and drive HOXA associated leukemic transcription program. However, it remains unclear whether and how HOTTIP lncRNA is involved in remodeling leukemic genome to facilitate AML leukemogenesis. Here, we showed that HOTTIP regulates a fraction of CTCF binding sites (CBSs) in the AML genome by directly interacting with CTCF and its binding motifs. We carried out CTCF ChIP-seq and HOTTIP ChIRP (chromatin isolation by RNA purification)-seq comparing WT and HOTTIP knockout (KO) MOLM13 cells. KO of HOTTIP in MLL-rearranged MOLM13 AML cells specifically impaired CTCF binding sites that were co-occupied by HOTTIP lncRNA, whereas loss of HOTTIP did not affect global CTCF binding. These target genes include posterior HOXA genes and Wnt target genes such as C-MYC, EVI1, AXIN, and TWIST1. Furthermore, we found that HOTTIP interacts with its putative target sites by formation of DNA: RNA hybridization structure triple helix and R-loop in vivo and in vitro. We then carried out DRIP (DNA-RNA immunoprecipitation)-seq and DRIPc(DNA-RNA immunoprecipitation followed by cDNA conversion)-Seq, which utilize a sequence independent but structure-specific S9.6 antibody for DRIP to capture global R-loops, by comparing WT and HOTTIP KO MOLM13 cells. The obtained DRIP-seq and DRIPc-seq data were then incorporated and integrated with the HOTTIP ChIRP-seq and CTCF ChIP-seq data to explore global collaboration between R-loop and HOTTIP associated CTCF binding sites. We found that HOTTIP interacts with CTCF binding motif that defines the TADs and the promoters of the HOTTIP target genes by formation of R-loop or triple helix structure. Loss of HOTTIP disrupted the R-loop formation at promoters and enhancers of the HOTTIP target genes to inhibit their expression. In MLL-rearranged AML genome, in addition to the HOXA locus, CTCF forms leukemic specific TADs that protect aberrant Wnt target genes. Depletion of HOTTIP lncRNA impaired CTCF defined TADs in the Wnt target gene loci and reduced Wnt target gene expression. In contrast, overexpression of Hottip lncRNA (Hottip-Tg) in the mice bone marrow hematopoietic compartment perturbs hematopoietic stem cell (HSC) self-renewal and differentiation leading to AML like disease by reinforcing CTCF defined TADs, enhancing chromatin accessibility within TADs, and upregulating gene transcription in the Wnt target loci. Finally, when we treated HOTTIP expressed primary patient AML cells carrying MLL-rearrangement and their derived PDX mouse model with a canonical Wnt inhibitor, ICG-001, ICG-001 inhibited AML LSC self-renewal in in vitro by LTC-IC assays and in vivo leukemogenesis in the PDX mouse models with an aberrant HOTTIP lncRNA expression, but not in HOTTIP negative/low non-MLL AML samples. Thus, HOTTIP lncRNA and CTCF cooperate to specifically reinforce CTCF defined WNT target locus TADs and drive Wnt target gene expression in the HOTTIP expressed AML. Disclosures No relevant conflicts of interest to declare.


1994 ◽  
Vol 14 (5) ◽  
pp. 3364-3375 ◽  
Author(s):  
S D Hanes ◽  
G Riddihough ◽  
D Ish-Horowicz ◽  
R Brent

We examined DNA site recognition by Bicoid and its importance for pattern formation in developing Drosophila embryos. Using altered DNA specificity Bicoid mutants and appropriate reporter genes, we show that Bicoid distinguishes among related DNA-binding sites in vivo by a specific contact between amino acid 9 of its recognition alpha-helix (lysine 50 of the homeodomain) and bp 7 of the site. This result is consistent with our earlier results using Saccharomyces cerevisiae but differs from that predicted by crystallographic analysis of another homeodomain-DNA interaction. Our results also demonstrate that Bicoid binds directly to those genes whose transcription it regulates and that the amino acid 9 contact is necessary for Bicoid to direct anterior pattern formation. In both Drosophila embryos and yeast cells, Bicoid requires multiple binding sites to activate transcription of target genes. We find that the distance between binding sites is critical for Bicoid activation but that, unexpectedly, this critical distance differs between Drosophila and S. cerevisiae. This result suggests that Bicoid activation in Drosophila might require an ancillary protein(s) not present in S. cerevisiae.


2008 ◽  
Vol 33 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Robert B. White ◽  
Melanie R. Ziman

Pax7 plays critical roles in development of brain, spinal cord, neural crest, and skeletal muscle. As a sequence-specific DNA-binding transcription factor, any direct functional role played by Pax7 during development is mediated through target gene selection. Thus, we have sought to identify genes targeted by Pax7 during embryonic development using an unbiased chromatin immunoprecipitation (ChIP) cloning assay to isolate cis-regulatory regions bound by Pax7 in vivo. Sequencing and genomic localization of a library of chromatin-DNA fragments bound by Pax7 has identified 34 candidate Pax7 target genes, with occupancy of a selection confirmed with independent chromatin enrichment tests (ChIP-PCR). To assess the capacity of Pax7 to regulate transcription from these loci, we have cloned alternate transcripts of Pax7 (differing significantly in their DNA binding domain) into expression vectors and transfected cultured cells with these constructs, then analyzed target gene expression levels using RT-PCR. We show that Pax7 directly occupies sites within genes encoding transcription factors Gbx1 and Eya4, the neurogenic cytokine receptor ciliary neurotrophic factor receptor, the neuronal potassium channel Kcnk2, and the signal transduction kinase Camk1d in vivo and regulates the transcriptional state of these genes in cultured cells. This analysis gives us greater insight into the direct functional role played by Pax7 during embryonic development.


Sign in / Sign up

Export Citation Format

Share Document