The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape

Development ◽  
1996 ◽  
Vol 122 (2) ◽  
pp. 481-489 ◽  
Author(s):  
L.G. Smith ◽  
S. Hake ◽  
A.W. Sylvester

It is often assumed that in plants, where the relative positions of cells are fixed by cell walls, division orientations are critical for the generation of organ shapes. However, an alternative perspective is that the generation of shape may be controlled at a regional level independently from the initial orientations of new cell walls. In support of this latter view, we describe here a recessive mutation of maize, tangled-1 (tan-1), that causes cells to divide in abnormal orientations throughout leaf development without altering overall leaf shape. In normal plants, leaf cells divide either transversely or longitudinally relative to the mother cell axis; transverse division are associated with leaf elongation and longitudinal divisions with leaf widening. In tan-l mutant leaves, cells in all tissue layers at a wide range of developmental stages divide transversely at normal frequencies, but longitudinal divisions are largely substituted by a variety of aberrantly oriented divisions in which the new cell wall is crooked or curved. Mutant leaves grow more slowly than normal, but their overall shapes are normal at all stages of their growth. These observations demonstrate that the generation of maize leaf shape does not depend on the precise spatial control of cell division, and support the general view that mechanisms independent from the control of cell division orientations are involved in the generation of shape during plant development.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shuwei Yu ◽  
Penghui Li ◽  
Xuecheng Zhao ◽  
Mangmang Tan ◽  
Muhammad Zulfiqar Ahmad ◽  
...  

AbstractThe growth of leaves and biosynthesis of characteristic secondary metabolites are critically important for tea production and quality control. However, little is known about the coordinated regulation of leaf development and catechin biosynthesis in tea plants. Here, we reported that TCP TFs are involved in both catechin biosynthesis and leaf development. An integrated analysis of catechin profiling and CsTCP expression in different tissues of plants under various environmental conditions at different developmental stages indicated significant correlations between the transcript levels of CIN-type TCPs and catechin production. CIN-type CsTCP3 and CsTCP4 and PCF-type CsTCP14 interacted with the MYB-bHLH-WD40 repeat (MBW) complex by forming a CsTCP3-CsTT8 heterodimer and modulating the transactivation activity of the promoters of anthocyanin synthase (CsANS1) and anthocyanidin reductase (CsANR1). Four types of microRNA/target modules, miR319b/CsTCP3-4, miR164b/CsCUC, miR396/CsGRF-GIF, and miR165b/HD-ZIPIII ones, were also identified and characterized for their functions in the regulation of the development of tea plant shoot tips and leaf shape. The results of these modules were reflected by their different expression patterns in developing buds and leaves that had distinctly different morphologies in three different tea plant varieties. Their roles in the regulation of catechin biosynthesis were also further verified by manipulation of microRNA319b (miR319b), which targets the transcripts of CsTCP3 and CsTCP4. Thus, CsTCPs represent at least one of these important groups of TFs that can integrate tea plant leaf development together with secondary metabolite biosynthesis. Our study provides new insight into shoot tip development and catechin production in tea plants and lays a foundation for further mechanistic understanding of the regulation of tea plant leaf development and secondary metabolism.


Genes ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 577 ◽  
Author(s):  
Jikai Ma ◽  
Lingmin Wei ◽  
Jiayu Li ◽  
Huogen Li

The leaf, a photosynthetic organ that plays an indispensable role in plant development and growth, has a certain ability to adapt to the environment and exhibits tremendous diversity among angiosperms. Liriodendron chinense, an ancestral angiosperm species, is very popular in landscaping. The leaf of this species has two lobes and resembles a Qing Dynasty Chinese robe; thus, leaf shape is the most valuable ornamental trait of the tree. In this work, to determine the candidate genes associated with leaf development in L. chinense, scanning electron microscopy (SEM) was employed to distinguish the developmental stages of tender leaves. Four stages were clearly separated, and transcriptome sequencing was performed for two special leaf stages. Altogether, there were 48.23 G clean reads in the libraries of the two leaf developmental stages, and 48,107 assembled unigenes were annotated with five databases. Among four libraries, 3118 differentially expressed genes (DEGs) were enriched in expression profiles. We selected ten DEGs associated with leaf development and validated their expression patterns via quantitative real-time PCR (qRT-PCR) assays. Most validation results were closely correlated with the RNA-sequencing data. Taken together, we examined the dynamic process of leaf development and indicated that several transcription factors and phytohormone metabolism genes may participate in leaf shape development. The transcriptome data analysis presented in this work aims to provide basic insights into the mechanisms mediating leaf development, and the results serve as a reference for the genetic breeding of ornamental traits in L. chinense.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 315
Author(s):  
Hailin Liu ◽  
Xin Han ◽  
Jue Ruan ◽  
Lian Xu ◽  
Bing He

The final size of plant leaves is strictly controlled by environmental and genetic factors, which coordinate cell expansion and cell cycle activity in space and time; however, the regulatory mechanisms of leaf growth are still poorly understood. Ginkgo biloba is a dioecious species native to China with medicinally and phylogenetically important characteristics, and its fan-shaped leaves are unique in gymnosperms, while the mechanism of G. biloba leaf development remains unclear. In this study we studied the transcriptome of G. biloba leaves at three developmental stages using high-throughput RNA-seq technology. Approximately 4167 differentially expressed genes (DEGs) were obtained, and a total of 12,137 genes were structure optimized together with 732 new genes identified. More than 50 growth-related factors and gene modules were identified based on DEG and Weighted Gene Co-expression Network Analysis. These results could remarkably expand the existing transcriptome resources of G. biloba, and provide references for subsequent analysis of ginkgo leaf development.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1537
Author(s):  
Aneta Saletnik ◽  
Bogdan Saletnik ◽  
Czesław Puchalski

Raman spectroscopy is one of the main analytical techniques used in optical metrology. It is a vibration, marker-free technique that provides insight into the structure and composition of tissues and cells at the molecular level. Raman spectroscopy is an outstanding material identification technique. It provides spatial information of vibrations from complex biological samples which renders it a very accurate tool for the analysis of highly complex plant tissues. Raman spectra can be used as a fingerprint tool for a very wide range of compounds. Raman spectroscopy enables all the polymers that build the cell walls of plants to be tracked simultaneously; it facilitates the analysis of both the molecular composition and the molecular structure of cell walls. Due to its high sensitivity to even minute structural changes, this method is used for comparative tests. The introduction of new and improved Raman techniques by scientists as well as the constant technological development of the apparatus has resulted in an increased importance of Raman spectroscopy in the discovery and defining of tissues and the processes taking place in them.


Author(s):  
Chiyuki Sassa

The feeding habits of myctophid larvae of Symbolophorus californiensis were examined in the southern transition region of the western North Pacific where the main spawning and nursery grounds of S. californiensis are formed. This species is a key component of the pelagic ecosystems of this region, and their larvae attain one of the largest sizes among myctophids. To analyse gut contents larvae, including most life history stages after yolk-sac absorption (3.7 to 22.2 mm body length (BL)), were collected in the upper 100 m layer in 1997 and 1998. Feeding incidence was higher during the day than at night (53.1–92.3% versus 0–5.6%), and daytime feeding incidence increased gradually with larval growth. Larvae fed mainly on copepods of various developmental stages. Larvae of S. californiensis showed an ontogenetic change in their diet: larvae ≤7.9 mm BL (i.e. preflexion stage) fed mainly on copepod eggs and nauplii, while the larvae ≥8 mm BL consumed mainly calanoid copepodites such as Pseudocalanus and Paracalanus spp. In the largest size-class (16–22.2 mm BL), the furcilia stage of euphausiids was also an important prey item. There was an increase in the average prey size with growth in larvae ≤11.9 mm BL, while the number of prey eaten positively correlated with growth in larvae ≥12 mm BL. The trophic niche breadth also increased with larval growth, which would ensure a wide range of available food resources for the larger size-class larvae.


Sign in / Sign up

Export Citation Format

Share Document