aubergine enhances oskar translation in the Drosophila ovary

Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1631-1639 ◽  
Author(s):  
J.E. Wilson ◽  
J.E. Connell ◽  
P.M. Macdonald

Although translational regulation of maternal mRNA is important for proper development of the Drosophila embryo, few genes involved in this process have been identified. In this report, we describe the role of aubergine in oskar translation. Previously, aubergine has been implicated in dorsoventral patterning, as eggs from aubergine mutant mothers are ventralized and seldom fertilized (Schupbach, T. and Wieschaus, E. (1991) Genetics 129, 1119–1136). We have isolated two new alleles of aubergine in a novel genetic screen and have shown that aubergine is also required for posterior body patterning, as the small fraction of eggs from aubergine- mothers that are fertilized develop into embryos which lack abdominal segmentation. Although aubergine mutations do not appear to affect the stability of either oskar mRNA or protein, the level of oskar protein is significantly reduced in aubergine mutants. Thus, aubergine is required to enhance oskar translation. While aubergine-dependence is conferred upon oskar mRNA by sequences in the oskar 3′ UTR, aubergine may influence oskar translation through an interaction with sequences upstream of the oskar 3′ UTR.

Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1343-1352 ◽  
Author(s):  
L.H. Frank ◽  
C. Rushlow

The amnioserosa is an extraembryonic, epithelial tissue that covers the dorsal side of the Drosophila embryo. The initial development of the amnioserosa is controlled by the dorsoventral patterning genes. Here we show that a group of genes, which we refer to as the U-shaped-group (ush-group), is required for maintenance of the amnioserosa tissue once it has differentiated. Using several molecular markers, we examined amnioserosa development in the ush-group mutants: u-shaped (ush), hindsight (hnt), serpent (srp) and tail-up (tup). Our results show that the amnioserosa in these mutants is specified correctly and begins to differentiate as in wild type. However, following germ-band extension, there is a premature loss of the amnioserosa. We demonstrate that this cell loss is a consequence of programmed cell death (apoptosis) in ush, hnt and srp, but not in tup. We discuss the role of the ush-group genes in maintaining the amnioserosa's viability. We also discuss a possible role for the amnioserosa in germ-band retraction in light of these mutants' unretracted phenotype.


1990 ◽  
Vol 10 (8) ◽  
pp. 4123-4129 ◽  
Author(s):  
C Duval ◽  
P Bouvet ◽  
F Omilli ◽  
C Roghi ◽  
C Dorel ◽  
...  

The first 12 cell divisions of Xenopus laevis embryos do not require gene transcription. This means that the regulation of gene expression during this period is controlled at post transcriptional levels and makes Xenopus early development a potentially interesting biological system with which to study the mechanisms involved. We describe here the stability characteristics of several maternal Xenopus mRNAs which are deadenylated soon after fertilisation (J. Paris and M. Philippe, Dev. Biol., in press). We show that these mRNAs were only degraded in the embryo after the midblastula transition (MBT), when gene transcription was initiated. The kinetics with which the deadenylated maternal mRNAs decreased in the post-MBT embryos showed sequence specificity. The degradation of these mRNAs after the MBT was inhibited by cycloheximide but was not affected by dactinomycin. Therefore, the destabilization of these mRNAs does not appear to be initiated by new embryonic gene transcripts. Sequence comparisons of the 3' untranslated region of these mRNAs identified several motifs which may be involved in the posttranscriptional control of these gene products.


1990 ◽  
Vol 10 (8) ◽  
pp. 4123-4129
Author(s):  
C Duval ◽  
P Bouvet ◽  
F Omilli ◽  
C Roghi ◽  
C Dorel ◽  
...  

The first 12 cell divisions of Xenopus laevis embryos do not require gene transcription. This means that the regulation of gene expression during this period is controlled at post transcriptional levels and makes Xenopus early development a potentially interesting biological system with which to study the mechanisms involved. We describe here the stability characteristics of several maternal Xenopus mRNAs which are deadenylated soon after fertilisation (J. Paris and M. Philippe, Dev. Biol., in press). We show that these mRNAs were only degraded in the embryo after the midblastula transition (MBT), when gene transcription was initiated. The kinetics with which the deadenylated maternal mRNAs decreased in the post-MBT embryos showed sequence specificity. The degradation of these mRNAs after the MBT was inhibited by cycloheximide but was not affected by dactinomycin. Therefore, the destabilization of these mRNAs does not appear to be initiated by new embryonic gene transcripts. Sequence comparisons of the 3' untranslated region of these mRNAs identified several motifs which may be involved in the posttranscriptional control of these gene products.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


2020 ◽  
Author(s):  
Ryan Weber ◽  
Martin McCullagh

<p>pH-switchable, self-assembling materials are of interest in biological imaging and sensing applications. Here we propose that combining the pH-switchability of RXDX (X=Ala, Val, Leu, Ile, Phe) peptides and the optical properties of coumarin creates an ideal candidate for these materials. This suggestion is tested with a thorough set of all-atom molecular dynamics simulations. We first investigate the dependence of pH-switchabiliy on the identity of the hydrophobic residue, X, in the bare (RXDX)<sub>4</sub> systems. Increasing the hydrophobicity stabilizes the fiber which, in turn, reduces the pH-switchabilty of the system. This behavior is found to be somewhat transferable to systems in which a single hydrophobic residue is replaced with a coumarin containing amino acid. In this case, conjugates with X=Ala are found to be unstable and both pHs while conjugates with X=Val, Leu, Ile and Phe are found to form stable β-sheets at least at neutral pH. The (RFDF)<sub>4</sub>-coumarin conjugate is found to have the largest relative entropy value of 0.884 +/- 0.001 between neutral and acidic coumarin ordering distributions. Thus, we posit that coumarin-(RFDF)<sub>4</sub> containing peptide sequences are ideal candidates for pH-sensing bioelectronic materials.</p>


2020 ◽  
Author(s):  
Shubham Deolka ◽  
Orestes Rivada Wheelaghan ◽  
Sandra Aristizábal ◽  
Robert Fayzullin ◽  
Shrinwantu Pal ◽  
...  

We report selective formation of heterobimetallic PtII/CuI complexes that demonstrate how facile bond activation processes can be achieved by altering reactivity of common organoplatinum compounds through their interaction with another metal center. The interaction of the Cu center with Pt center and with a Pt-bound alkyl group increases the stability of PtMe2 towards undesired rollover cyclometalation. The presence of the CuI center also enables facile transmetalation from electron-deficient tetraarylborate [B(ArF)4]- anion and mild C-H bond cleavage of a terminal alkyne, which was not observed in the absence of an electrophilic Cu center. The DFT study indicates that the role of Cu center acts as a binding site for alkyne substrate, while activating its terminal C-H bond.


Author(s):  
Nikolai Petrov ◽  
Nikolai Petrov ◽  
Inna Nikonorova ◽  
Inna Nikonorova ◽  
Vladimir Mashin ◽  
...  

High-speed railway "Moscow-Kazan" by the draft crosses the Volga (Kuibyshev reservoir) in Chuvashia region 500 m below the village of New Kushnikovo. The crossing plot is a right-bank landslide slope with a stepped surface. Its height is 80 m; the slope steepness -15-16o. The authors should assess the risk of landslides and recommend anti-landslide measures to ensure the safety of the future bridge. For this landslide factors have been analyzed, slope stability assessment has been performed and recommendations have been suggested. The role of the following factors have been analyzed: 1) hydrologic - erosion and abrasion reservoir and runoff role; 2) lithologyc (the presence of Urzhum and Northern Dvina horizons of plastically deformable rocks, displacement areas); 3) hydrogeological (the role of perched, ground and interstratal water); 4) geomorphological (presence of the elemental composition of sliding systems and their structure in the relief); 5) exogeodynamic (cycles and stages of landslide systems development, mechanisms and relationship between landslide tiers of different generations and blocks contained in tiers). As a result 6-7 computational models at each of the three engineering-geological sections were made. The stability was evaluated by the method “of the leaning slope”. It is proved that the slope is in a very stable state and requires the following measures: 1) unloading (truncation) of active heads blocks of landslide tiers) and the edge of the plateau, 2) regulation of the surface and groundwater flow, 3) concrete dam, if necessary.


2019 ◽  
Vol 18 (3) ◽  
pp. 232-238 ◽  
Author(s):  
Emanuela Onesti ◽  
Vittorio Frasca ◽  
Marco Ceccanti ◽  
Giorgio Tartaglia ◽  
Maria Cristina Gori ◽  
...  

Background: The cannabinoid system may be involved in the humoral mechanisms at the neuromuscular junction. Ultramicronized-palmitoylethanolamide (μm-PEA) has recently been shown to reduce the desensitization of Acetylcholine (ACh)-evoked currents in denervated patients modifying the stability of ACh receptor (AChR) function. <p> Objective: To analyze the possible beneficial effects of μm-PEA in patients with myasthenia gravis (MG) on muscular fatigue and neurophysiological changes. <p> Method: The duration of this open pilot study, which included an intra-individual control, was three weeks. Each patient was assigned to a 1-week treatment period with μm-PEA 600 mg twice a day. A neurophysiological examination based on repetitive nerve stimulation (RNS) of the masseteric and the axillary nerves was performed, and the quantitative MG (QMG) score was calculated in 22 MG patients every week in a three-week follow-up period. AChR antibody titer was investigated to analyze a possible immunomodulatory effect of PEA in MG patients. <p> Results: PEA had a significant effect on the QMG score (p=0.03418) and on RNS of the masseteric nerve (p=0.01763), thus indicating that PEA reduces the level of disability and decremental muscle response. Antibody titers did not change significantly after treatment. <p> Conclusion: According to our observations, μm-PEA as an add-on therapy could improve muscular response to fatigue in MG. The possible modulation of AChR currents as a means of eliciting a direct effect from PEA on the conformation of ACh receptors should be investigated. The co-role of cytokines also warrants an analysis. Given the rapidity and reversibility of the response, we suppose that PEA acts directly on AChR, though further studies are needed to confirm this hypothesis.


Sign in / Sign up

Export Citation Format

Share Document