A C. elegans E/Daughterless bHLH protein marks neuronal but not striated muscle development

Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2179-2189 ◽  
Author(s):  
M. Krause ◽  
M. Park ◽  
J.M. Zhang ◽  
J. Yuan ◽  
B. Harfe ◽  
...  

The E proteins of mammals, and the related Daughterless (DA) protein of Drosophila, are ubiquitously expressed helix-loop-helix (HLH) transcription factors that play a role in many developmental processes. We report here the characterization of a related C. elegans protein, CeE/DA, which has a dynamic and restricted distribution during development. CeE/DA is present embryonically in neuronal precursors, some of which are marked by promoter activity of a newly described Achaete-scute-like gene hlh-3. In contrast, we have been unable to detect CeE/DA in CeMyoD-positive striated muscle cells. In vitro gel mobility shift analysis detects dimerization of CeE/DA with HLH-3 while efficient interaction of CeE/DA with CeMyoD is not seen. These studies suggest multiple roles for CeE/DA in C. elegans development and provide evidence that both common and alternative strategies have evolved for the use of related HLH proteins in controlling cell fates in different species.

1997 ◽  
Vol 17 (11) ◽  
pp. 6563-6573 ◽  
Author(s):  
Y Hamamori ◽  
H Y Wu ◽  
V Sartorelli ◽  
L Kedes

In vertebrates, the basic helix-loop-helix (bHLH) protein Twist may be involved in the negative regulation of cellular determination and in the differentiation of several lineages, including myogenesis, osteogenesis, and neurogenesis. Although it has been shown that mouse twist (M-Twist) (i) sequesters E proteins, thus preventing formation of myogenic E protein-MyoD complexes and (ii) inhibits the MEF2 transcription factor, a cofactor of myogenic bHLH proteins, overexpression of E proteins and MEF2 failed to rescue the inhibitory effects of M-Twist on MyoD. We report here that M-Twist physically interacts with the myogenic bHLH proteins in vitro and in vivo and that this interaction is required for the inhibition of MyoD by M-Twist. In contrast to the conventional HLH-HLH domain interaction formed in the MyoD/E12 heterodimer, this novel type of interaction uses the basic domains of the two proteins. While the MyoD HLH domain without the basic domain failed to interact with M-Twist, a MyoD peptide containing only the basic and helix 1 regions was sufficient to interact with M-Twist, suggesting that the basic domain contacts M-Twist. The replacement of three arginine residues by alanines in the M-Twist basic domain was sufficient to abolish both the binding and inhibition of MyoD by M-Twist, while the domain retained other M-Twist functions such as heterodimerization with an E protein and inhibition of MEF2 transactivation. These findings demonstrate that M-Twist interacts with MyoD through the basic domains, thereby inhibiting MyoD.


1989 ◽  
Vol 9 (11) ◽  
pp. 4835-4845
Author(s):  
S J Anderson ◽  
S Miyake ◽  
D Y Loh

We identified a regulatory region of the murine V beta promoter by both in vivo and in vitro analyses. The results of transient transfection assays indicated that the dominant transcription-activating element within the V beta 8.3 promoter is the palindromic motif identified previously as the conserved V beta decamer. Elimination of this element, by linear deletion or specific mutation, reduced transcriptional activity from this promoter by 10-fold. DNase I footprinting, gel mobility shift, and methylation interference assays confirmed that the palindrome acts as the binding site of a specific nuclear factor. In particular, the V beta promoter motif functioned in vitro as a high-affinity site for a previously characterized transcription activator, ATF. A consensus cyclic AMP response element (CRE) but not a consensus AP-1 site, can substitute for the decamer in vivo. These data suggest that cyclic AMP response element-binding protein (ATF/CREB) or related proteins activate V beta transcription.


2000 ◽  
Vol 74 (11) ◽  
pp. 5053-5065 ◽  
Author(s):  
Jeannie F. Spagnolo ◽  
Brenda G. Hogue

ABSTRACT RNA viruses have 5′ and 3′ untranslated regions (UTRs) that contain specific signals for RNA synthesis. The coronavirus genome is capped at the 5′ end and has a 3′ UTR that consists of 300 to 500 nucleotides (nt) plus a poly(A) tail. To further our understanding of coronavirus replication, we have begun to examine the involvement of host factors in this process for two group II viruses, bovine coronavirus (BCV) and mouse hepatitis coronavirus (MHV). Specific host protein interactions with the BCV 3′ UTR [287 nt plus poly(A) tail] were identified using gel mobility shift assays. Competition with the MHV 3′ UTR [301 nt plus poly(A) tail] suggests that the interactions are conserved for the two viruses. Proteins with molecular masses of 99, 95, and 73 kDa were detected in UV cross-linking experiments. Less heavily labeled proteins were also detected in the ranges of 40 to 50 and 30 kDa. The poly(A) tail was required for binding of the 73-kDa protein. Immunoprecipitation of UV-cross-linked proteins identified the 73-kDa protein as the cytoplasmic poly(A)-binding protein (PABP). Replication of the defective genomes BCV Drep and MHV MIDI-C, along with several mutants, was used to determine the importance of the poly(A) tail. Defective genomes with shortened poly(A) tails consisting of 5 or 10 A residues were replicated after transfection into helper virus-infected cells. BCV Drep RNA that lacked a poly(A) tail did not replicate, whereas replication of MHV MIDI-C RNA with a deleted tail was detected after several virus passages. All mutants exhibited delayed kinetics of replication. Detectable extension or addition of the poly(A) tail to the mutants correlated with the appearance of these RNAs in the replication assay. RNAs with shortened poly(A) tails exhibited less in vitro PABP binding, suggesting that decreased interactions with the protein may affect RNA replication. The data strongly indicate that the poly(A) tail is an important cis-acting signal for coronavirus replication.


1997 ◽  
Vol 17 (10) ◽  
pp. 5923-5934 ◽  
Author(s):  
H Lu ◽  
R P Fisher ◽  
P Bailey ◽  
A J Levine

Phosphorylation is believed to be one of the mechanisms by which p53 becomes activated or stabilized in response to cellular stress. Previously, p53 was shown to interact with three components of transcription factor IIH (TFIIH): excision repair cross-complementing types 2 and 3 (ERCC2 and ERCC3) and p62. This communication demonstrates that p53 is phosphorylated by the TFIIH-associated kinase in vitro. The phosphorylation was found to be catalyzed by the highly purified kinase components of TFIIH, the CDK7-cycH-p36 trimeric complex. The phosphorylation sites were mapped to the C-terminal amino acids located between residues 311 and 393. Serines 371, 376, 378, and 392 may be the potential sites for this kinase. Phosphorylation of p53 by this kinase complex enhanced the ability of p53 to bind to the sequence-specific p53-responsive DNA element as shown by gel mobility shift assays. These results suggest that the CDK7-cycH-p36 trimeric complex of TFIIH may play a role in regulating p53 functions in cells.


Author(s):  
Sumana Sundaramurthy ◽  
SarahBeth Votra ◽  
Arianna Laszlo ◽  
Tim Davies ◽  
David Pruyne

AbstractThe striated body wall muscles of Caenorhabditis elegans are a simple model system with well-characterized sarcomeres that have many vertebrate protein homologs. Previously, we observed deletion mutants for two formin genes, fhod-1 and cyk-1, developed thin muscles with abnormal dense bodies/sarcomere Z-lines. However, the nature of the cyk-1 mutation necessitated maternal CYK-1 expression for viability of the examined animals. Here, we tested the effects of complete loss of CYK-1 using a fast acting temperature-sensitive cyk-1(ts) mutant. Surprisingly, neither post-embryonic loss of CYK-1 nor acute loss of CYK-1 during embryonic sarcomerogenesis caused muscle defects, suggesting CYK-1 might not play a direct role in muscle development. Consistent with this, examination of cyk-1(Δ) mutants re-expressing CYK-1 in a mosaic pattern showed CYK-1 cannot rescue muscle defects in a muscle cell autonomous manner, suggesting muscle phenotypes caused by cyk-1 deletion are likely indirect. Conversely, mosaic re-expression of FHOD-1 in fhod-1(Δ) mutants promoted muscle cell growth, as well as proper Z-line organization, in a muscle cell autonomous manner. As we can observe no effect of loss of any other worm formin on muscle development, we conclude that FHOD-1 is the only formin that directly promotes striated muscle development in C. elegans.


Author(s):  
Biswajyoti Borah ◽  
Ajit Pratap Singh ◽  
Hamen Gogoi ◽  
Amlan Jyoti Phukan ◽  
Bikash Chandra Sarkhel

Transgenic food animal production is one of the potential and need oriented research to mitigate the food crises of the world. In vitro gene silenced animal cells and making use of these cells for transgenesis one of the suitable way to produce productive animals. Myostatin is a negative regulator of muscle growth, has the potential to increase the muscle mass upon its silencing. Four Hush 29-mer anti- myostatin (MSTN) shRNA constructs were checked for myostatin gene silencing in caprine foetal fibroblast cells and its subsequent effect on basic helix– loop–helix (bHLH) transcription factors. These factors are necessary for the terminal differentiation, proliferation, and homeostasis of muscle development. Different shRNA constructs displayed 55.1 to 91.5% (p less than 0.01) of myostatin silencing in caprine foetal fibroblast cells and upregulation of myogenic gene. Upregulation of 7.97 to 111.67 % for MyoD, 77.0 % to 319.47 % for myogenin, 16.67 % to 138.0 % for Myf5 were observed . The Pearson correlation established a negative correlation between myostatin and genes under study. Result suggests that knockdown of MSTN a potential approach to improve caprine musculatures.


1991 ◽  
Vol 11 (4) ◽  
pp. 2162-2168 ◽  
Author(s):  
E Dubois ◽  
F Messenguy

ARGRI, ARGRII, and ARGRIII regulatory proteins control the expression of arginine anabolic and catabolic genes in Saccharomyces cerevisiae. We show here that they are also required in vitro to observe a protein-DNA complex with the promoter of the ARG5,6 gene. The specific binding of ARGR proteins in vitro is stimulated by arginine. Antibodies raised against a synthetic MCM1 polypeptide retard the migration of ARGR-DNA complex on gel mobility shift assays. This result suggests that MCM1 could be an additional regulatory element of arginine metabolism.


2013 ◽  
Vol 87 (23) ◽  
pp. 12885-12899 ◽  
Author(s):  
Jianyan Wu ◽  
Jia Li ◽  
Xiang Mao ◽  
Weiwu Wang ◽  
Zhaobang Cheng ◽  
...  

The P9-1 protein ofRice black-streaked dwarf virus(RBSDV) is an essential part of the viroplasm. However, little is known about its nature or biological function in the viroplasm. In this study, the structure and function of P9-1 were analyzed forin vitrobinding to nucleic acids. We found that the P9-1 protein preferentially bound to single-stranded versus double-stranded nucleic acids; however, the protein displayed no preference for RBSDV versus non-RBSDV single-stranded ssRNA (ssRNA). A gel mobility shift assay revealed that the RNA gradually shifted as increasing amounts of P9-1 were added, suggesting that multiple subunits of P9-1 bind to ssRNA. By using discontinuous blue native gel and chromatography analysis, we found that the P9-1 protein was capable of forming dimers, tetramers, and octamers. Strikingly, we demonstrated that P9-1 preferentially bound to ssRNA in the octamer, rather than the dimer, form. Deletion of the C-terminal arm resulted in P9-1 no longer forming octamers; consequently, the deletion mutant protein bound to ssRNA with significantly lower affinity and with fewer copies bound per ssRNA. Alanine substitution analysis revealed that electropositive amino acids among residues 25 to 44 are important for RNA binding and map to the central interior structure that was formed only by P9-1 octamers. Collectively, our findings provide novel insights into the structure and function of RBSDV viroplasm protein P9-1 binding to RNA.


1995 ◽  
Vol 15 (7) ◽  
pp. 3813-3822 ◽  
Author(s):  
S M Hollenberg ◽  
R Sternglanz ◽  
P F Cheng ◽  
H Weintraub

With modified two-hybrid technology, we have isolated a member of a new family of basic helix-loop-helix (bHLH) transcription factors. Thing1 (Th1) was identified in a screen of a mouse embryo cDNA library as a partner for the Drosophila E protein daughterless. RNA in situ hybridization and reverse transcriptase-PCR demonstrate a stage- and tissue-specific distribution for the expression of Th1. Although tissue specific, the expression pattern of Th1 is fairly complex. During development, Th1 mRNA is widely expressed in extraembryonic tissues, portions of the heart, autonomic ganglia, the gut, and pharyngeal arches. At embryonic day 7.5 (E7.5), extraembryonic derivatives show robust Th1 expression. By E8.5, expression in the embryonic heart becomes detectable. During the next 2 days of development, the signal also includes gut and pharyngeal arches. Predominant expression at E13.5 is in neural crest derivatives, especially the autonomic nervous system and adrenal medulla. Expression of Th1 persists in the adult, in which it is localized to the smooth muscle cells of the gut. In vitro, Th1 protein recognizes a set of DNA sites that are more degenerate than has been determined for other bHLH factors, indicating a reduced binding specificity. Transient transfection of NIH 3T3 cells with GAL4-Th1 fusions reveals a repression activity mediated by the Th1 bHLH domain. In combination, these properties define Th1 as a new bHLH protein with a unique set of properties.


2003 ◽  
Vol 77 (17) ◽  
pp. 9244-9258 ◽  
Author(s):  
K. S. Rajendran ◽  
Peter D. Nagy

ABSTRACT Tomato bushy stunt virus (TBSV), a tombusvirus with a nonsegmented, plus-stranded RNA genome, codes for two essential replicase proteins. The sequence of one of the replicase proteins, namely p33, overlaps with the N-terminal domain of p92, which contains the signature motifs of RNA-dependent RNA polymerases (RdRps) in its nonoverlapping C-terminal portion. In this work, we demonstrate that both replicase proteins bind to RNA in vitro based on gel mobility shift and surface plasmon resonance measurements. We also show evidence that the binding of p33 to single-stranded RNA (ssRNA) is stronger than binding to double-stranded RNA (dsRNA), ssDNA, or dsDNA in vitro. Competition experiments with ssRNA revealed that p33 binds to a TBSV-derived sequence with higher affinity than to other nonviral ssRNA sequences. Additional studies revealed that p33 could bind to RNA in a cooperative manner. Using deletion derivatives of the Escherichia coli-expressed recombinant proteins in gel mobility shift and Northwestern assays, we demonstrate that p33 and the overlapping domain of p92, based on its sequence identity with p33, contain an arginine- and proline-rich RNA-binding motif (termed RPR, which has the sequence RPRRRP). This motif is highly conserved among tombusviruses and related carmoviruses, and it is similar to the arginine-rich motif present in the Tat trans-activator protein of human immunodeficiency virus type 1. We also find that the nonoverlapping C-terminal domain of p92 contains additional RNA-binding regions. Interestingly, the location of one of the RNA-binding domains in p92 is similar to the RNA-binding domain of the NS5B RdRp protein of hepatitis C virus.


Sign in / Sign up

Export Citation Format

Share Document