Preventing the loss of competence for neural induction: HGF/SF, L5 and Sox-2

Development ◽  
1997 ◽  
Vol 124 (6) ◽  
pp. 1191-1202 ◽  
Author(s):  
A. Streit ◽  
S. Sockanathan ◽  
L. Perez ◽  
M. Rex ◽  
P.J. Scotting ◽  
...  

The response to neural induction depends on the presence of inducing signals and on the state of competence of the responding tissue. The epiblast of the chick embryo loses its ability to respond to neural induction by the organizer (Hensen's node) between stages 4 and 4+. We find that the pattern of expression of the L5(220) antigen closely mirrors the changes in competence of the epiblast in time and in space. For the first time, we describe an experiment that can extend the period of neural competence: when L5(220) expression is maintained beyond its normal time by implanting HGF/SF secreting cells, the competence to respond to Hensen's node grafts is retained. The host epiblast forms a non-regionalized neural tube, which expresses the pan-neural marker SOX-2 (a Sry-related transcription factor) but not any region-specific markers for the forebrain, hindbrain or spinal cord. Although HGF/SF secreting cells can mimic signals from Hensen's node that maintain L5 expression, they cannot rescue the ability of the node to induce anterior structures (which is normally lost after stage 4). The ectoderm may acquire stable neural characteristics during neural induction by going through a hierarchy of states: competence, neuralization and regionalization. Our findings allow us to start to define these different states at a molecular level, and show that the competence to respond to neural induction is not entirely autonomous to the responding cells, but can be regulated by extracellular signalling molecules.

Development ◽  
1992 ◽  
Vol 114 (3) ◽  
pp. 729-741 ◽  
Author(s):  
K.G. Storey ◽  
J.M. Crossley ◽  
E.M. De Robertis ◽  
W.E. Norris ◽  
C.D. Stern

Induction and regionalisation of the chick nervous system were investigated by transplanting Hensen's node into the extra-embryonic region (area opaca margin) of a host embryo. Chick/quail chimaeras were used to determine the contributions of host and donor tissue to the supernumerary axis, and three molecular markers, Engrailed, neurofilaments (antibody 3A10) and XlHbox1/Hox3.3 were used to aid the identification of particular regions of the ectopic axis. We find that the age of the node determines the regions of the nervous system that form: young nodes (stages 2–4) induced both anterior and posterior nervous system, while older nodes (stages 5–6) have reduced inducing ability and generate only posterior nervous system. By varying the age of the host embryo, we show that the competence of the epiblast to respond to neural induction declines after stage 4. We conclude that during normal development, the initial steps of neural induction take place before stage 4 and that anteroposterior regionalisation of the nervous system may be a later process, perhaps associated with the differentiating notochord. We also speculate that the mechanisms responsible for induction of head CNS differ from those that generate the spinal cord: the trunk CNS could arise by homeogenetic induction by anterior CNS or by elongation of neural primordia that are induced very early.


2021 ◽  
Vol 22 (23) ◽  
pp. 13024
Author(s):  
Liang-Yo Yang ◽  
Meng-Yu Tsai ◽  
Shu-Hui Juan ◽  
Shwu-Fen Chang ◽  
Chang-Tze Ricky Yu ◽  
...  

Methylprednisolone (MP) is an anti-inflammatory drug approved for the treatment of acute spinal cord injuries (SCIs). However, MP administration for SCIs has become a controversial issue while the molecular effects of MP remain unexplored to date. Therefore, delineating the benefits and side effects of MP and determining what MP cannot cure in SCIs at the molecular level are urgent issues. Here, genomic profiles of the spinal cord in rats with and without injury insults, and those with and without MP treatment, were generated at 0, 2, 4, 6, 8, 12, 24, and 48 h post-injury. A comprehensive analysis was applied to obtain three distinct classes: side effect of MP (SEMP), competence of MP (CPMP), and incapability of MP (ICMP). Functional analysis using these genes suggested that MP exerts its greatest effect at 8~12 h, and the CPMP was reflected in the immune response, while SEMP suggested aspects of metabolism, such as glycolysis, and ICMP was on neurological system processes in acute SCIs. For the first time, we are able to precisely reveal responsive functions of MP in SCIs at the molecular level and provide useful solutions to avoid complications of MP in SCIs before better therapeutic drugs are available.


Author(s):  
L. Vacca-Galloway ◽  
Y.Q. Zhang ◽  
P. Bose ◽  
S.H. Zhang

The Wobbler mouse (wr) has been studied as a model for inherited human motoneuron diseases (MNDs). Using behavioral tests for forelimb power, walking, climbing, and the “clasp-like reflex” response, the progress of the MND can be categorized into early (Stage 1, age 21 days) and late (Stage 4, age 3 months) stages. Age-and sex-matched normal phenotype littermates (NFR/wr) were used as controls (Stage 0), as well as mice from two related wild-type mouse strains: NFR/N and a C57BI/6N. Using behavioral tests, we also detected pre-symptomatic Wobblers at postnatal ages 7 and 14 days. The mice were anesthetized and perfusion-fixed for immunocytochemical (ICC) of CGRP and ChAT in the spinal cord (C3 to C5).Using computerized morphomety (Vidas, Zeiss), the numbers of IR-CGRP labelled motoneurons were significantly lower in 14 day old Wobbler specimens compared with the controls (Fig. 1). The same trend was observed at 21 days (Stage 1) and 3 months (Stage 4). The IR-CGRP-containing motoneurons in the Wobbler specimens declined progressively with age.


2015 ◽  
Vol 58 ◽  
pp. 83-100 ◽  
Author(s):  
Selena Gimenez-Ibanez ◽  
Marta Boter ◽  
Roberto Solano

Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-l-isoleucine (JA-Ile), is perceived by the COI1–JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sujatha Thankeswaran Parvathy ◽  
Amala Joseph Prabakaran ◽  
Thadakamalla Jayakrishna

AbstractCastor (Ricinus communis L) is an ideal model species for sex mechanism studies in monoecious angiosperms, due to wide variations in sex expression. Sex reversion to monoecy in pistillate lines, along with labile sex expression, negatively influences hybrid seed purity. The study focuses on understanding the mechanisms of unisexual flower development, sex reversions and sex variations in castor, using various genotypes with distinct sex expression pattern. Male and female flowers had 8 and 12 developmental stages respectively, were morphologically similar till stage 4, with an intermediate bisexual state and were intermediate between type 1 and type 2 flowers. Pistil abortion was earlier than stamen inhibition. Sex alterations occurred at floral and inflorescence level. While sex-reversion was unidirectional towards maleness via bisexual stage, at high day temperatures (Tmax > 38 °C), femaleness was restored with subsequent drop in temperatures. Temperature existing for 2–3 weeks during floral meristem development, influences sexuality of the flower. We report for first time that unisexuality is preceded by bisexuality in castor flowers which alters with genotype and temperature, and sex reversions as well as high sexual polymorphisms in castor are due to alterations in floral developmental pathways. Differentially expressed (male-abundant or male-specific) genes Short chain dehydrogenase reductase 2a (SDR) and WUSCHEL are possibly involved in sex determination of castor.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 425
Author(s):  
Hyung-Woo Kang ◽  
Eun-Yong Lee ◽  
Kyoung-Ki Lee ◽  
Mi-Kyeong Ko ◽  
Ji-Young Park ◽  
...  

Equine herpesvirus-1 (EHV-1) is an important pathogen in horses. It affects horses worldwide and causes substantial economic losses. In this study, for the first time, we characterized EHV-1 isolates from South Korea at the molecular level. We then aimed to determine the genetic divergences of these isolates by comparing them to sequences in databases. In total, 338 horse samples were collected, and 12 EHV-1 were isolated. We performed ORF30, ORF33, ORF68, and ORF34 genetic analysis and carried out multi-locus sequence typing (MLST) of 12 isolated EHV-1. All isolated viruses were confirmed as non-neuropathogenic type, showing N752 of ORF30 and highly conserved ORF33 (99.7–100%). Isolates were unclassified using ORF68 analysis because of a 118 bp deletion in nucleotide sequence 701–818. Seven EHV-1 isolates (16Q4, 19R166-1, 19R166-6, 19/10/15-2, 19/10/15-4, 19/10/18-2, 19/10/22-1) belonged to group 1, clade 10, based on ORF34 and MLST analysis. The remaining 5 EHV-1 isolates (15Q25-1, 15D59, 16Q5, 16Q40, 18D99) belonged to group 7, clade 6, based on ORF34 and MLST analysis.


2011 ◽  
Vol 39 (4) ◽  
pp. 4691-4695 ◽  
Author(s):  
Yavuz Dodurga ◽  
Çığır Biray Avcı ◽  
N. Lale Satiroglu-Tufan ◽  
Canten Tataroglu ◽  
Zehra Kesen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document