Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene

Development ◽  
1998 ◽  
Vol 125 (5) ◽  
pp. 825-836 ◽  
Author(s):  
H. Yanagisawa ◽  
M. Yanagisawa ◽  
R.P. Kapur ◽  
J.A. Richardson ◽  
S.C. Williams ◽  
...  

Recent gene targeting studies have revealed unexpected roles for endothelins in the development of neural crest-derived tissues. Endothelin converting enzyme-1 (ECE-1) catalyzes the proteolytic activation of big endothelin-1 to endothelin-1(ET-1) in vitro. However, the importance of ECE-1 cleavage in the multiple endothelin pathways in vivo is unknown. Here we generated a targeted null mutation in the mouse ECE-1 gene. ECE-1−/− term embryos exhibited craniofacial and cardiac abnormalities virtually identical to the defects seen in ET-1 and endothelin A receptor (ETA)-deficient embryos. Epidermal melanocytes as well as enteric neurons of the distal gut were also absent in ECE-1−/− embryos, reproducing the developmental phenotype seen in ET-3−/− and endothelin B receptor (ETB)−/− mice. Surprisingly, large amounts of mature ET-1 peptide are found in ECE-1−/− embryos, indicating that non-ECE-1 protease(s) can activate ET-1 at certain sites. However, these enzymes cannot produce sufficient mature endothelin at the locations crucial for normal embryonic development. These findings reveal that ECE-1 is a bona fide activating protease for both big ET-1 and big ET-3 in vivo, and that the cell-cell communication pathways represented by the ET-1/ECE-1/ETA axis and the ET-3/ECE-1/ETB axis are each involved in the development of distinct subsets of neural crest cell lineages. Mutations in ECE-1 may cause developmental defects in humans, such as Hirschsprung disease, velocardiofacial syndrome and related neurocristopathies.

2013 ◽  
Vol 203 (4) ◽  
pp. 673-689 ◽  
Author(s):  
Ah-Lai Law ◽  
Anne Vehlow ◽  
Maria Kotini ◽  
Lauren Dodgson ◽  
Daniel Soong ◽  
...  

Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd’s Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo.


1993 ◽  
Vol 61 ◽  
pp. 214
Author(s):  
Sigenori Inagaki ◽  
Masahiko Ikeda ◽  
Takako Tomita ◽  
Akihito Morita ◽  
Motoyoshi Nomizu ◽  
...  

2014 ◽  
Vol 25 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Andrew T. Schiffmacher ◽  
Rangarajan Padmanabhan ◽  
Sharon Jhingory ◽  
Lisa A. Taneyhill

The epithelial-to-mesenchymal transition (EMT) is a highly coordinated process underlying both development and disease. Premigratory neural crest cells undergo EMT, migrate away from the neural tube, and differentiate into diverse cell types during vertebrate embryogenesis. Adherens junction disassembly within premigratory neural crest cells is one component of EMT and, in chick cranial neural crest cells, involves cadherin-6B (Cad6B) down-regulation. Whereas Cad6B transcription is repressed by Snail2, the rapid loss of Cad6B protein during EMT is suggestive of posttranslational mechanisms that promote Cad6B turnover. For the first time in vivo, we demonstrate Cad6B proteolysis during neural crest cell EMT, which generates a Cad6B N-terminal fragment (NTF) and two C-terminal fragments (CTF1/2). Coexpression of relevant proteases with Cad6B in vitro shows that a disintegrin and metalloproteinases (ADAMs) ADAM10 and ADAM19, together with γ-secretase, cleave Cad6B to produce the NTF and CTFs previously observed in vivo. Of importance, both ADAMs and γ-secretase are expressed in the appropriate spatiotemporal pattern in vivo to proteolytically process Cad6B. Overexpression or depletion of either ADAM within premigratory neural crest cells prematurely reduces or maintains Cad6B, respectively. Collectively these results suggest a dual mechanism for Cad6B proteolysis involving two ADAMs, along with γ-secretase, during cranial neural crest cell EMT.


2001 ◽  
Vol 73 (4) ◽  
pp. 533-545 ◽  
Author(s):  
ELISABETH DUPIN ◽  
CARLA REAL ◽  
NICOLE LeDOUARIN

How the considerable diversity of neural crest (NC)-derived cell types arises in the vertebrate embryo has long been a key question in developmental biology. The pluripotency and plasticity of differentiation of the NC cell population has been fully documented and it is well-established that environmental cues play an important role in patterning the NC derivatives throughout the body. Over the past decade, in vivo and in vitro cellular approaches have unravelled the differentiation potentialities of single NC cells and led to the discovery of NC stem cells. Although it is clear that the final fate of individual cells is in agreement with their final position within the embryo, it has to be stressed that the NC cells that reach target sites are pluripotent and further restrictions occur only late in development. It is therefore a heterogenous collection of cells that is submitted to local environmental signals in the various NC-derived structures. Several factors were thus identified which favor the development of subsets of NC-derived cells in vitro. Moreover, the strategy of gene targeting in mouse has led at identifying new molecules able to control one or several aspects of NC cell differentiation in vivo. Endothelin peptides (and endothelin receptors) are among those. The conjunction of recent data obtained in mouse and avian embryos and reviewed here contributes to a better understanding of the action of the endothelin signaling pathway in the emergence and stability of NC-derived cell phenotypes.


2017 ◽  
Vol 216 (10) ◽  
pp. 3339-3354 ◽  
Author(s):  
Rebecca McLennan ◽  
Caleb M. Bailey ◽  
Linus J. Schumacher ◽  
Jessica M. Teddy ◽  
Jason A. Morrison ◽  
...  

Neural crest cells are both highly migratory and significant to vertebrate organogenesis. However, the signals that regulate neural crest cell migration remain unclear. In this study, we test the function of differential screening-selected gene aberrant in neuroblastoma (DAN), a bone morphogenetic protein (BMP) antagonist we detected by analysis of the chick cranial mesoderm. Our analysis shows that, before neural crest cell exit from the hindbrain, DAN is expressed in the mesoderm, and then it becomes absent along cell migratory pathways. Cranial neural crest and metastatic melanoma cells avoid DAN protein stripes in vitro. Addition of DAN reduces the speed of migrating cells in vivo and in vitro, respectively. In vivo loss of function of DAN results in enhanced neural crest cell migration by increasing speed and directionality. Computer model simulations support the hypothesis that DAN restrains cell migration by regulating cell speed. Collectively, our results identify DAN as a novel factor that inhibits uncontrolled neural crest and metastatic melanoma invasion and promotes collective migration in a manner consistent with the inhibition of BMP signaling.


1993 ◽  
Vol 265 (1) ◽  
pp. H139-H145 ◽  
Author(s):  
S. Liben ◽  
D. J. Stewart ◽  
J. De Marte ◽  
T. Perreault

Endothelin-1 (ET-1), a 21-amino acid peptide produced by endothelial cells, results from the cleavage of preproendothelin, generating Big ET-1, which is then cleaved by the ET-converting enzyme (ECE) to form ET-1. Big ET-1, like ET-1, is released by endothelial cells. Big ET-1 is equipotent to ET-1 in vivo, whereas its vasoactive effects are less in vitro. It has been suggested that the effects of Big ET-1 depend on its conversion to ET-1. ET-1 has potent vasoactive effects in the newborn pig pulmonary circulation, however, the effects of Big ET-1 remain unknown. Therefore, we studied the effects of Big ET-1 in isolated perfused lungs from 1- and 7-day-old piglets using the ECE inhibitor, phosphoramidon, and the ETA receptor antagonist, BQ-123Na. The rate of conversion of Big ET-1 to ET-1 was measured using radioimmunoassay. ET-1 (10(-13) to 10(-8) M) produced an initial vasodilation, followed by a dose-dependent potent vasoconstriction (P < 0.001), which was equal at both ages. Big ET-1 (10(-11) to 10(-8) M) also produced a dose-dependent vasoconstriction (P < 0.001). The constrictor effects of Big ET-1 and ET-1 were similar in the 1-day-old, whereas in the 7-day-old, the constrictor effect of Big ET-1 was less than that of ET-1 (P < 0.017).(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Author(s):  
Rebecca McLennan ◽  
Mary C. McKinney ◽  
Jessica M. Teddy ◽  
Jason A. Morrison ◽  
Jennifer C. Kasemeier-Kulesa ◽  
...  

ABSTRACTNeural crest migration requires cells to move through an environment filled with dense extracellular matrix and mesoderm to reach targets throughout the vertebrate embryo. Here, we use high-resolution microscopy, computational modeling, and in vitro and in vivo cell invasion assays to investigate the function of Aquaporin-1 (AQP-1) signaling. We find that migrating lead cranial neural crest cells express AQP-1 mRNA and protein, implicating a biological role for water channel protein function during invasion. Differential AQP-1 levels affect neural crest cell speed, direction, and the length and stability of cell filopodia. Further, AQP-1 enhances matrix metalloprotease (MMP) activity and colocalizes with phosphorylated focal adhesion kinases (pFAK). Co-localization of AQP-1 expression with EphB guidance receptors in the same migrating neural crest cells raises novel implications for the concept of guided bulldozing by lead cells during migration.


2019 ◽  
Vol 29 (2) ◽  
pp. 305-319 ◽  
Author(s):  
Janina Schwenty-Lara ◽  
Denise Nehl ◽  
Annette Borchers

Abstract Kabuki syndrome is an autosomal dominant developmental disorder with high similarities to CHARGE syndrome. It is characterized by a typical facial gestalt in combination with short stature, intellectual disability, skeletal findings and additional features like cardiac and urogenital malformations, cleft palate, hearing loss and ophthalmological anomalies. The major cause of Kabuki syndrome are mutations in KMT2D, a gene encoding a histone H3 lysine 4 (H3K4) methyltransferase belonging to the group of chromatin modifiers. Here we provide evidence that Kabuki syndrome is a neurocrestopathy, by showing that Kmt2d loss-of-function inhibits specific steps of neural crest (NC) development. Using the Xenopus model system, we find that Kmt2d loss-of-function recapitulates major features of Kabuki syndrome including severe craniofacial malformations. A detailed marker analysis revealed defects in NC formation as well as migration. Transplantation experiments confirm that Kmt2d function is required in NC cells. Furthermore, analyzing in vivo and in vitro NC migration behavior demonstrates that Kmt2d is necessary for cell dispersion but not protrusion formation of migrating NC cells. Importantly, Kmt2d knockdown correlates with a decrease in H3K4 monomethylation and H3K27 acetylation supporting a role of Kmt2d in the transcriptional activation of target genes. Consistently, using a candidate approach, we find that Kmt2d loss-of-function inhibits Xenopus Sema3F expression, and overexpression of Sema3F can partially rescue Kmt2d loss-of-function defects. Taken together, our data reveal novel functions of Kmt2d in multiple steps of NC development and support the hypothesis that major features of Kabuki syndrome are caused by defects in NC development.


2005 ◽  
Vol 16 (11) ◽  
pp. 5283-5293 ◽  
Author(s):  
Lisa A. Taneyhill ◽  
Marianne Bronner-Fraser

The Wnt signaling pathway is important in the formation of neural crest cells in many vertebrates, but the downstream targets of neural crest induction by Wnt are largely unknown. Here, we examined quantitative changes in gene expression regulated by Wnt-mediated neural crest induction using quantitative PCR (QPCR). Induction was recapitulated in vitro by adding soluble Wnt to intermediate neural plate tissue cultured in collagen, and induced versus control tissue were assayed using gene-specific primers at times corresponding to premigratory (18 and 24 h) or early (36 h) stages of crest migration. The results show that Wnt signaling up-regulates in a distinct temporal pattern the expression of several genes normally expressed in the dorsal neural tube (slug, Pax3, Msx1, FoxD3, cadherin 6B) at “premigratory” stages. While slug is maintained in early migrating crest cells, Pax3, FoxD3, Msx1 and cadherin 6B all are down-regulated by the start of migration. These results differ from the temporal profile of these genes in response to the addition of recombinant BMP4, where gene expression seems to be maintained. Interestingly, expression of rhoB is unchanged or even decreased in response to Wnt-mediated induction at all times examined, though it is up-regulated by BMP signals. The temporal QPCR profiles in our culture paradigm approximate in vivo expression patterns of these genes before neural crest migration, and are consistent with Wnt being an initial neural crest inducer with additional signals like BMP and other factors maintaining expression of these genes in vivo. Our results are the first to quantitatively describe changes in gene expression in response to a Wnt or BMP signal during transformation of a neural tube cell into a migratory neural crest cell.


Sign in / Sign up

Export Citation Format

Share Document