Patterning of Drosophila leg sensory organs through combinatorial signaling by hedgehog, decapentaplegic and wingless

Development ◽  
1999 ◽  
Vol 126 (13) ◽  
pp. 2891-2899 ◽  
Author(s):  
R. Hays ◽  
K.T. Buchanan ◽  
C. Neff ◽  
T.V. Orenic

During development, global patterning events initiate signal transduction cascades which gradually establish an array of individual cell fates. Many of the genes which pattern Drosophila are expressed throughout development and specify diverse cell types by creating unique local environments which establish the expression of locally acting genes. This process is exemplified by the patterning of leg microchaete rows. hairy (h) is expressed in a spatially restricted manner in the leg imaginal disc and functions to position adult leg bristle rows by negatively regulating the proneural gene achaete, which specifies sensory cell fates. While much is known about the events that partition the leg imaginal disc and about sensory cell differentiation, the mechanisms that refine early patterning events to the level of individual cell fate specification are not well understood. We have investigated the regulation of h expression along the dorsal/ventral (D/V) axis of the leg adjacent to the anterior/posterior (A/P) compartment boundary and have found that it requires input from both D/V and A/P patterning mechanisms. Expression of the D/V axis h stripe (D/V-h) is controlled by dorsal- and ventral-specific enhancer elements which are targets of Decapentaplegic (Dpp) and Wingless (Wg) signaling, respectively, but which are also dependent on Hedgehog (Hh) signaling for activation. D/V-h expression is lost in smoothened mutant clones and is specifically activated by exogenously supplied Cubitus interruptus (Ci). D/V-h expression is also lost in clones deficient for Dpp and Wg signaling, but ectopic activation of D/V-h by Dpp and Wg is limited to the A/P compartment boundary where endogenous levels of full-length Ci are high. We propose that D/V-h expression is regulated in a non-linear pathway in which Ci plays a dual role. In addition to serving as an upstream activator of Dpp and Wg, Ci acts combinatorially with them to activate D/V-h expression.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Melanie I Worley ◽  
Larissa A Alexander ◽  
Iswar K Hariharan

Regeneration following tissue damage often necessitates a mechanism for cellular re-programming, so that surviving cells can give rise to all cell types originally found in the damaged tissue. This process, if unchecked, can also generate cell types that are inappropriate for a given location. We conducted a screen for genes that negatively regulate the frequency of notum-to-wing transformations following genetic ablation and regeneration of the wing pouch, from which we identified mutations in the transcriptional co-repressor C-terminal Binding Protein (CtBP). When CtBP function is reduced, ablation of the pouch can activate the JNK/AP-1 and JAK/STAT pathways in the notum to destabilize cell fates. Ectopic expression of Wingless and Dilp8 precede the formation of the ectopic pouch, which is subsequently generated by recruitment of both anterior and posterior cells near the compartment boundary. Thus, CtBP stabilizes cell fates following damage by opposing the destabilizing effects of the JNK/AP-1 and JAK/STAT pathways.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2407
Author(s):  
Ruicen He ◽  
Arthur Dantas ◽  
Karl Riabowol

Acetylation of histones is a key epigenetic modification involved in transcriptional regulation. The addition of acetyl groups to histone tails generally reduces histone-DNA interactions in the nucleosome leading to increased accessibility for transcription factors and core transcriptional machinery to bind their target sequences. There are approximately 30 histone acetyltransferases and their corresponding complexes, each of which affect the expression of a subset of genes. Because cell identity is determined by gene expression profile, it is unsurprising that the HATs responsible for inducing expression of these genes play a crucial role in determining cell fate. Here, we explore the role of HATs in the maintenance and differentiation of various stem cell types. Several HAT complexes have been characterized to play an important role in activating genes that allow stem cells to self-renew. Knockdown or loss of their activity leads to reduced expression and or differentiation while particular HATs drive differentiation towards specific cell fates. In this study we review functions of the HAT complexes active in pluripotent stem cells, hematopoietic stem cells, muscle satellite cells, mesenchymal stem cells, neural stem cells, and cancer stem cells.


Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3865-3876
Author(s):  
M.S. Rones ◽  
K.A. McLaughlin ◽  
M. Raffin ◽  
M. Mercola

Notch signaling mediates numerous developmental cell fate decisions in organisms ranging from flies to humans, resulting in the generation of multiple cell types from equipotential precursors. In this paper, we present evidence that activation of Notch by its ligand Serrate apportions myogenic and non-myogenic cell fates within the early Xenopus heart field. The crescent-shaped field of heart mesoderm is specified initially as cardiomyogenic. While the ventral region of the field forms the myocardial tube, the dorsolateral portions lose myogenic potency and form the dorsal mesocardium and pericardial roof (Raffin, M., Leong, L. M., Rones, M. S., Sparrow, D., Mohun, T. and Mercola, M. (2000) Dev. Biol., 218, 326–340). The local interactions that establish or maintain the distinct myocardial and non-myocardial domains have never been described. Here we show that Xenopus Notch1 (Xotch) and Serrate1 are expressed in overlapping patterns in the early heart field. Conditional activation or inhibition of the Notch pathway with inducible dominant negative or active forms of the RBP-J/Suppressor of Hairless [Su(H)] transcription factor indicated that activation of Notch feeds back on Serrate1 gene expression to localize transcripts more dorsolaterally than those of Notch1, with overlap in the region of the developing mesocardium. Moreover, Notch pathway activation decreased myocardial gene expression and increased expression of a marker of the mesocardium and pericardial roof, whereas inhibition of Notch signaling had the opposite effect. Activation or inhibition of Notch also regulated contribution of individual cells to the myocardium. Importantly, expression of Nkx2. 5 and Gata4 remained largely unaffected, indicating that Notch signaling functions downstream of heart field specification. We conclude that Notch signaling through Su(H) suppresses cardiomyogenesis and that this activity is essential for the correct specification of myocardial and non-myocardial cell fates.


2005 ◽  
Vol 25 (23) ◽  
pp. 10479-10491 ◽  
Author(s):  
Karen D. Cowden Dahl ◽  
Benjamin H. Fryer ◽  
Fiona A. Mack ◽  
Veerle Compernolle ◽  
Emin Maltepe ◽  
...  

ABSTRACT Placental development initially occurs in a low-oxygen (O2) or hypoxic environment. In this report we show that two hypoxia-inducible factors (HIFs), HIF1α and HIF2α, are essential for determining murine placental cell fates. HIF is a heterodimer composed of HIFα and HIFβ (ARNT) subunits. Placentas from Arnt − / − and Hif1α − / − Hif2α −/− embryos exhibit defective placental vascularization and aberrant cell fate adoption. HIF regulation of Mash2 promotes spongiotrophoblast differentiation, a prerequisite for trophoblast giant cell differentiation. In the absence of Arnt or Hifα, trophoblast stem cells fail to generate these cell types and become labyrinthine trophoblasts instead. Therefore, HIF mediates placental morphogenesis, angiogenesis, and cell fate decisions, demonstrating that O2 tension is a critical regulator of trophoblast lineage determination. This novel genetic approach provides new insights into the role of O2 tension in the development of life-threatening pregnancy-related diseases such as preeclampsia.


2020 ◽  
Vol 6 (50) ◽  
pp. eabe8159
Author(s):  
Joanna C. D. Bairzin ◽  
Maya Emmons-Bell ◽  
Iswar K. Hariharan

During development, tissue-specific patterns of gene expression are established by transcription factors and then stably maintained via epigenetic mechanisms. Cancer cells often express genes that are inappropriate for that tissue or developmental stage. Here, we show that high activity levels of Yki, the Hippo pathway coactivator that causes overgrowth in Drosophila imaginal discs, can also disrupt cell fates by altering expression of selector genes like engrailed (en) and Ultrabithorax (Ubx). Posterior clones expressing activated Yki can down-regulate en and express an anterior selector gene, cubitus interruptus (ci). The microRNA bantam and the chromatin regulator Taranis both function downstream of Yki in promoting ci expression. The boundary between Yki-expressing posterior clones and surrounding wild-type cells acquires properties reminiscent of the anteroposterior compartment boundary; Hedgehog signaling pathway activation results in production of Dpp. Thus, at least in principle, heterotypic interactions between Yki-expressing cells and their neighbors could activate boundary-specific signaling mechanisms.


Development ◽  
1997 ◽  
Vol 124 (24) ◽  
pp. 5097-5106 ◽  
Author(s):  
G.J. Muehlbauer ◽  
J.E. Fowler ◽  
M. Freeling

The longitudinal axis of the maize leaf is composed of, in proximal to distal order, sheath, ligule, auricle and blade. The semidominant Liguleless3-O (Lg3-O) mutation disrupts leaf development at the ligular region of the leaf midrib by transforming blade to sheath. In a previous study, we showed that leaf sectors of Lg3 mutant activity are cell nonautonomous in the transverse dimension and can confer several alternative developmental fates (Fowler, Muehlbauer and Freeling (1996) Genetics 143, 489–503). In our present study we identify five Lg3 sector types in the leaf: sheath-like with displaced ligule (sheath-like), sheath-like with ectopic ligule (ectopic ligule), auricle-like, macro-hairless blade and wild-type blade. The acquisition of a specific sector fate depends on the timing of Lg3 expression. Early Lg3 expression results in adoption of the sheath-like phenotype at the ligule position (a proximal cell fate), whereas later Lg3 expression at the same position results in one of the more distal cell fates. Furthermore, sheath-like Lg3 sectors exhibit a graded continuum of phenotypes in the transformed blade region from the most proximal (sheath) to the most distal (wild-type blade), suggesting that cell fate acquisition is a gradual process. We propose a model for leaf cell fate acquisition based on a timing mechanism whereby cells of the leaf primordium progress through a maturation schedule of competency stages which eventually specify the cell types along the proximal to distal axis of the leaf. In addition, the lateral borders between Lg3 ‘on’ sectors and wild-type leaf sometimes provide evidence of no spreading of the transformed phenotype. In these cases, competency stages are inherited somatically.


Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3241-3251 ◽  
Author(s):  
M.T. Su ◽  
M. Fujioka ◽  
T. Goto ◽  
R. Bodmer

A series of inductive signals are necessary to subdivide the mesoderm in order to allow the formation of the progenitor cells of the heart. Mesoderm-endogenous transcription factors, such as those encoded by twist and tinman, seem to cooperate with these signals to confer correct context and competence for a cardiac cell fate. Additional factors are likely to be required for the appropriate specification of individual cell types within the forming heart. Similar to tinman, the zinc finger- and homeobox-containing gene, zfh-1, is expressed in the early mesoderm and later in the forming heart, suggesting a possible role in heart development. Here, we show that zfh-1 is specifically required for formation of the even-skipped (eve)-expressing subset of pericardial cells (EPCs), without affecting the formation of their siblings, the founders of a dorsal body wall muscle (DA1). In addition to zfh-1, mesodermal eve itself appears to be needed for correct EPC differentiation, possibly as a direct target of zfh-1. Epistasis experiments show that zfh-1 specifies EPC development independently of numb, the lineage gene that controls DA1 founder versus EPC cell fate. We discuss the combinatorial control mechanisms that specify the EPC cell fate in a spatially precise pattern within the embryo.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3175-3185 ◽  
Author(s):  
M.Q. Martindale ◽  
J.Q. Henry

The nemerteans belong to a phylum of coelomate worms that display a highly conserved pattern of cell divisions referred to as spiral cleavage. It has recently been shown that the fates of the four embryonic cell quadrants in two species of nemerteans are not homologous to those in other spiralian embryos, such as the annelids and molluscs (Henry, J. Q. and Martindale, M. Q. (1994a) Develop. Genetics 15, 64–78). Equal-cleaving molluscs utilize inductive interactions to establish quadrant-specific cell fates and embryonic symmetry properties following fifth cleavage. In order to elucidate the manner in which cell fates are established in nemertean embryos, we have conducted cell isolation and deletion experiments to examine the developmental potential of the early cleavage blastomeres of two equal-cleaving nemerteans, Nemertopsis bivittata and Cerebratulus lacteus. These two species display different modes of development: N. bivittata develops directly via a non-feeding larvae, while C. lacteus develops to form a feeding pilidium larva which undergoes a radical metamorphosis to give rise to the juvenile worm. By examining the development of certain structures and cell types characteristic of quadrant-specific fates for each of these species, we have shown that isolated blastomeres of the indirect-developing nemertean, C. lacteus, are capable of generating cell fates that are not a consequence of that cell's normal developmental program. For instance, dorsal blastomeres can form muscle fibers when cultured in isolation. In contrast, isolated blastomeres of the direct-developing species, N. bivittata do not regulate their development to the same extent. Some cell fates are specified in a precocious manner in this species, such as those that give rise to the eyes. Thus, these findings indicate that equal-cleaving spiralian embryos can utilize different mechanisms of cell fate and axis specification. The implications of these patterns of nemertean development are discussed in relation to experimental work in other spiralian embryos, and a model is presented that accounts for possible evolutionary changes in cell lineage and the process of cell fate specification amongst these protostome phyla.


Development ◽  
2001 ◽  
Vol 128 (17) ◽  
pp. 3263-3268 ◽  
Author(s):  
Marco Milán ◽  
Ulrich Weihe ◽  
Stanley Tiong ◽  
Welcome Bender ◽  
Stephen M. Cohen

Drosophila limbs develop from imaginal discs that are subdivided into compartments. Dorsal-ventral subdivision of the wing imaginal disc depends on apterous activity in dorsal cells. Apterous protein is expressed in dorsal cells and is responsible for (1) induction of a signaling center along the dorsal-ventral compartment boundary (2) establishment of a lineage restriction boundary between compartments and (3) specification of dorsal cell fate. Here, we report that the homeobox gene msh (muscle segment homeobox) acts downstream of apterous to confer dorsal identity in wing development.


2021 ◽  
Author(s):  
George Maiti ◽  
Maithe Rocha Monteiro de Barros ◽  
Nan Hu ◽  
Mona Roshan ◽  
Karl J Wahlin ◽  
...  

The cornea is a protective and refractive barrier in the eye crucial for vision. Understanding the human cornea in health, disease and cell-based treatments can be greatly advanced with cornea organoids developed in culture from induced pluripotent stem cells. While a limited number of studies have investigated the single-cell transcriptomic composition of the human cornea, its organoids have not been examined similarly. Here we elucidated the transcriptomic cell fate map of 4 month-old human cornea organoids and the central cornea from three donors. The organoids harbor cell clusters representing corneal epithelium, stroma and endothelium with sub populations that capture signatures of early developmental states. Unlike the adult cornea where the largest cell population is stromal, the organoids develop almost equal proportion of the three major cell types. These corneal organoids offer a three-dimensional platform to model corneal diseases and integrated responses of the different cell types to treatments.


Sign in / Sign up

Export Citation Format

Share Document