scholarly journals Induced Neurons From Germ Cells in Caenorhabditis elegans

2021 ◽  
Vol 15 ◽  
Author(s):  
Iris Marchal ◽  
Baris Tursun

Cell fate conversion by the forced overexpression of transcription factors (TFs) is a process known as reprogramming. It leads to de-differentiation or trans-differentiation of mature cells, which could then be used for regenerative medicine applications to replenish patients suffering from, e.g., neurodegenerative diseases, with healthy neurons. However, TF-induced reprogramming is often restricted due to cell fate safeguarding mechanisms, which require a better understanding to increase reprogramming efficiency and achieve higher fidelity. The germline of the nematode Caenorhabditis elegans has been a powerful model to investigate the impediments of generating neurons from germ cells by reprogramming. A number of conserved factors have been identified that act as a barrier for TF-induced direct reprogramming of germ cells to neurons. In this review, we will first summarize our current knowledge regarding cell fate safeguarding mechanisms in the germline. Then, we will focus on the molecular mechanisms underlying neuronal induction from germ cells upon TF-mediated reprogramming. We will shortly discuss the specific characteristics that might make germ cells especially fit to change cellular fate and become neurons. For future perspectives, we will look at the potential of C. elegans research in advancing our knowledge of the mechanisms that regulate cellular identity, and what implications this has for therapeutic approaches such as regenerative medicine.

Development ◽  
1999 ◽  
Vol 126 (5) ◽  
pp. 1011-1022 ◽  
Author(s):  
T.L. Gumienny ◽  
E. Lambie ◽  
E. Hartwieg ◽  
H.R. Horvitz ◽  
M.O. Hengartner

Development of the nematode Caenorhabditis elegans is highly reproducible and the fate of every somatic cell has been reported. We describe here a previously uncharacterized cell fate in C. elegans: we show that germ cells, which in hermaphrodites can differentiate into sperm and oocytes, also undergo apoptotic cell death. In adult hermaphrodites, over 300 germ cells die, using the same apoptotic execution machinery (ced-3, ced-4 and ced-9) as the previously described 131 somatic cell deaths. However, this machinery is activated by a distinct pathway, as loss of egl-1 function, which inhibits somatic cell death, does not affect germ cell apoptosis. Germ cell death requires ras/MAPK pathway activation and is used to maintain germline homeostasis. We suggest that apoptosis eliminates excess germ cells that acted as nurse cells to provide cytoplasmic components to maturing oocytes.


2020 ◽  
Vol 8 (4) ◽  
pp. 24 ◽  
Author(s):  
Nida ul Fatima ◽  
Baris Tursun

The potential of a cell to produce all types of differentiated cells in an organism is termed totipotency. Totipotency is an essential property of germ cells, which constitute the germline and pass on the parental genetic material to the progeny. The potential of germ cells to give rise to a whole organism has been the subject of intense research for decades and remains important in order to better understand the molecular mechanisms underlying totipotency. A better understanding of the principles of totipotency in germ cells could also help to generate this potential in somatic cell lineages. Strategies such as transcription factor-mediated reprogramming of differentiated cells to stem cell-like states could benefit from this knowledge. Ensuring pluripotency or even totipotency of reprogrammed stem cells are critical improvements for future regenerative medicine applications. The C. elegans germline provides a unique possibility to study molecular mechanisms that maintain totipotency and the germ cell fate with its unique property of giving rise to meiotic cells Studies that focused on these aspects led to the identification of prominent chromatin-repressing factors such as the C. elegans members of the Polycomb Repressive Complex 2 (PRC2). In this review, we summarize different factors that were recently identified, which use molecular mechanisms such as control of protein translation or chromatin repression to ensure maintenance of totipotency and the germline fate. Additionally, we focus on recently identified factors involved in preventing transcription-factor-mediated conversion of germ cells to somatic lineages. These so-called reprogramming barriers have been shown in some instances to be conserved with regard to their function as a cell fate safeguarding factor in mammals. Overall, continued studies assessing the different aspects of molecular pathways involved in maintaining the germ cell fate in C. elegans may provide more insight into cell fate safeguarding mechanisms also in other species.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Stefanie Seelk ◽  
Irene Adrian-Kalchhauser ◽  
Balázs Hargitai ◽  
Martina Hajduskova ◽  
Silvia Gutnik ◽  
...  

Cell-fate reprograming is at the heart of development, yet very little is known about the molecular mechanisms promoting or inhibiting reprograming in intact organisms. In the C. elegans germline, reprograming germ cells into somatic cells requires chromatin perturbation. Here, we describe that such reprograming is facilitated by GLP-1/Notch signaling pathway. This is surprising, since this pathway is best known for maintaining undifferentiated germline stem cells/progenitors. Through a combination of genetics, tissue-specific transcriptome analysis, and functional studies of candidate genes, we uncovered a possible explanation for this unexpected role of GLP-1/Notch. We propose that GLP-1/Notch promotes reprograming by activating specific genes, silenced by the Polycomb repressive complex 2 (PRC2), and identify the conserved histone demethylase UTX-1 as a crucial GLP-1/Notch target facilitating reprograming. These findings have wide implications, ranging from development to diseases associated with abnormal Notch signaling.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 111-121 ◽  
Author(s):  
Lisa C Kadyk ◽  
Eric J Lambie ◽  
Judith Kimble

The germ line is the only tissue in Caenorhabditis elegans in which a stem cell population continues to divide mitotically throughout life; hence the cell cycles of the germ line and the soma are regulated differently. Here we report the genetic and phenotypic characterization of the glp-3 gene. In animals homozygous for each of five recessive loss-of-function alleles, germ cells in both hermaphrodites and males fail to progress through mitosis and meiosis, but somatic cells appear to divide normally. Germ cells in animals grown at 15° appear by DAPI staining to be uniformly arrested at the G2/M transition with <20 germ cells per gonad on average, suggesting a checkpoint-mediated arrest. In contrast, germ cells in mutant animals grown at 25° frequently proliferate slowly during adulthood, eventually forming small germ lines with several hundred germ cells. Nevertheless, cells in these small germ lines never undergo meiosis. Double mutant analysis with mutations in other genes affecting germ cell proliferation supports the idea that glp-3 may encode a gene product that is required for the mitotic and meiotic cell cycles in the C. elegans germ line.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


2005 ◽  
Vol 126 (4) ◽  
pp. 379-392 ◽  
Author(s):  
Maria V. Espelt ◽  
Ana Y. Estevez ◽  
Xiaoyan Yin ◽  
Kevin Strange

Defecation in the nematode Caenorhabditis elegans is a readily observable ultradian behavioral rhythm that occurs once every 45–50 s and is mediated in part by posterior body wall muscle contraction (pBoc). pBoc is not regulated by neural input but instead is likely controlled by rhythmic Ca2+ oscillations in the intestinal epithelium. We developed an isolated nematode intestine preparation that allows combined physiological, genetic, and molecular characterization of oscillatory Ca2+ signaling. Isolated intestines loaded with fluo-4 AM exhibit spontaneous rhythmic Ca2+ oscillations with a period of ∼50 s. Oscillations were only detected in the apical cell pole of the intestinal epithelium and occur as a posterior-to-anterior moving intercellular Ca2+ wave. Loss-of-function mutations in the inositol-1,4,5-trisphosphate (IP3) receptor ITR-1 reduce pBoc and Ca2+ oscillation frequency and intercellular Ca2+ wave velocity. In contrast, gain-of-function mutations in the IP3 binding and regulatory domains of ITR-1 have no effect on pBoc or Ca2+ oscillation frequency but dramatically increase the speed of the intercellular Ca2+ wave. Systemic RNA interference (RNAi) screening of the six C. elegans phospholipase C (PLC)–encoding genes demonstrated that pBoc and Ca2+ oscillations require the combined function of PLC-γ and PLC-β homologues. Disruption of PLC-γ and PLC-β activity by mutation or RNAi induced arrhythmia in pBoc and intestinal Ca2+ oscillations. The function of the two enzymes is additive. Epistasis analysis suggests that PLC-γ functions primarily to generate IP3 that controls ITR-1 activity. In contrast, IP3 generated by PLC-β appears to play little or no direct role in ITR-1 regulation. PLC-β may function instead to control PIP2 levels and/or G protein signaling events. Our findings provide new insights into intestinal cell Ca2+ signaling mechanisms and establish C. elegans as a powerful model system for defining the gene networks and molecular mechanisms that underlie the generation and regulation of Ca2+ oscillations and intercellular Ca2+ waves in nonexcitable cells.


2005 ◽  
Vol 25 (12) ◽  
pp. 5158-5170 ◽  
Author(s):  
Yieyie Yang ◽  
Erik A. Lundquist

ABSTRACT The roles of actin-binding proteins in development and morphogenesis are not well understood. The actin-binding protein UNC-115 has been implicated in cytoskeletal signaling downstream of Rac in Caenorhabditis elegans axon pathfinding, but the cellular role of UNC-115 in this process remains undefined. Here we report that UNC-115 overactivity in C. elegans neurons promotes the formation of neurites and lamellipodial and filopodial extensions similar to those induced by activated Rac and normally found in C. elegans growth cones. We show that UNC-115 activity in neuronal morphogenesis is enhanced by two molecular mechanisms: when ectopically driven to the plasma membrane by the myristoylation sequence of c-Src, and by mutation of a putative serine phosphorylation site in the actin-binding domain of UNC-115. In support of the hypothesis that UNC-115 modulates actin cytoskeletal organization, we show that UNC-115 activity in serum-starved NIH 3T3 fibroblasts results in the formation of lamellipodia and filopodia. We conclude that UNC-115 is a novel regulator of the formation of lamellipodia and filopodia in neurons, possibly in the growth cone during axon pathfinding.


2016 ◽  
Vol 371 (1710) ◽  
pp. 20150407 ◽  
Author(s):  
Amel Alqadah ◽  
Yi-Wen Hsieh ◽  
Rui Xiong ◽  
Chiou-Fen Chuang

Left–right asymmetry in the nervous system is observed across species. Defects in left–right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing ‘C’ (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWC OFF (default) and AWC ON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’.


Author(s):  
Edward Hookway ◽  
Nicholas Athanasou ◽  
Udo Oppermann

Epigenetics is a term that refers to a collection of diverse mechanisms that are important in both the control of gene expression and the transmission of this information during cell division. Epigenetic processes are deranged in many cancers, leading to a combination of inappropriate silencing of tumour suppressor genes and overexpression of oncogenes. In this chapter, the molecular mechanisms that underpin the major epigenetic processes of DNA methylation, histone modification, and non-coding RNAs will be described in both their normal physiological roles and in the context of cancer. The challenge of understanding the complexity of the interactions between different epigenetic mechanisms and the limitations of our current knowledge will be highlighted. Therapeutic approaches towards targeting deranged epigenetic processes will also be described, such as the use of small molecule inhibitors of histone deacetylases.


Sign in / Sign up

Export Citation Format

Share Document