scholarly journals The BMP signaling pathway is required together with the FGF pathway for notochord induction in the ascidian embryo

Development ◽  
2001 ◽  
Vol 128 (14) ◽  
pp. 2629-2638 ◽  
Author(s):  
Sébastien Darras ◽  
Hiroki Nishida

The 40 notochord cells of the ascidian tadpole invariably arise from two different lineages: the primary (A-line) and the secondary (B-line) lineages. It has been shown that the primary notochord cells are induced by presumptive endoderm blastomeres between the 24-cell and the 64-cell stage. Signaling through the fibroblast growth factor (FGF) pathway is required for this induction. We have investigated the role of the bone morphogenetic protein (BMP) pathway in ascidian notochord formation. HrBMPb (the ascidian BMP2/4 homologue) is expressed in the anterior endoderm at the 44-cell stage before the completion of notochord induction. The BMP antagonist Hrchordin is expressed in a complementary manner in all surrounding blastomeres and appears to be a positive target of the BMP pathway. Unexpectedly, chordin overexpression reduced formation of both primary and secondary notochord. Conversely, primary notochord precursors isolated prior to induction formed notochord in presence of BMP-4 protein. While bFGF protein had a similar activity, notochord precursors showed a different time window of competence to respond to BMP-4 and bFGF. Our data are consistent with bFGF acting from the 24-cell stage, while BMP-4 acts during the 44-cell stage. However, active FGF signaling was also required for induction by BMP-4. In the secondary lineage, notochord specification also required two inducing signals: an FGF signal from anterior and posterior endoderm from the 24-cell stage and a BMP signal from anterior endoderm during the 44-cell stage.

2018 ◽  
Author(s):  
E. Negreiros ◽  
S. Herszterg ◽  
K. Hwa ◽  
A. Câmara ◽  
W.B. Dias ◽  
...  

AbstractDisorders of N-linked glycosylation are increasingly reported in the literature. However, targets responsible for the associated developmental and physiological defects are largely unknown. Bone Morphogenetic Proteins (BMPs) act as highly dynamic complexes to regulate several functions during development. The range and strength of BMP activity depend on interactions with glycosylated protein complexes in the extracellular milieu. Here we investigate the role of glycosylation for the function of the conserved extracellular BMP antagonist Short gastrulation (Sog). We identify conserved N-glycosylated sites and describe the effect of mutating these residues on BMP pathway activity in Drosophila. Functional analysis reveals that loss of individual Sog glycosylation sites enhances BMP antagonism and/or increases the spatial range of Sog effects in the tissue. Mechanistically, we provide evidence that N-terminal and stem glycosylation controls extracellular Sog levels and distribution. The identification of similar residues in vertebrate Chordin proteins suggests that N-glycosylation may be an evolutionarily conserved process that adds complexity to the regulation of BMP activity.Summary StatementN-glycosylation restricts the function of Short gastrulation during Drosophila development by controlling the amount of extracellular protein. This adds another layer of complexity to regulation of Bone Morphogenetic Protein signals.


Author(s):  
Jennie Au ◽  
Daniela F Requena ◽  
Hannah Rishik ◽  
Sampada Kallol ◽  
Chandana Tekkatte ◽  
...  

Abstract The Bone Morphogenetic Protein (BMP) pathway is involved in numerous developmental processes, including cell growth, apoptosis, and differentiation. In mouse embryogenesis, BMP signaling is a well-known morphogen for both mesoderm induction and germ cell development. Recent evidence points to a potential role in development of the extra-embryonic compartment, including trophectoderm-derived tissues. In this study, we investigated the effect of BMP signaling in both mouse and human trophoblast stem cells (TSC) in vitro, evaluating the expression and activation of the BMP signaling response machinery, and the effect of BMP signaling manipulation during TSC maintenance and differentiation. Both mTSC and hTSC expressed various BMP ligands and the receptors BMPR1A and BMPR2, necessary for BMP response, and displayed maximal active BMP signaling when undifferentiated. We also observed a conserved modulatory role of BMP signaling during trophoblast differentiation, whereby maintenance of active BMP signaling blunted differentiation of TSC in both species. Conversely, the effect of BMP signaling on the undifferentiated state of TSC appeared to be species-specific, with SMAD-independent signaling important in maintenance of mTSC, and a more subtle role for both SMAD-dependent and -independent BMP signaling in hTSC. Altogether, these data establish an autocrine role for the BMP pathway in the trophoblast compartment. As specification and correct differentiation of the extra-embryonic compartment are fundamental for implantation and early placental development, insights on the role of the BMP signaling in early development might prove useful in the setting of in vitro fertilization as well as targeting trophoblast-associated placental dysfunction.


2021 ◽  
Vol 9 (3) ◽  
pp. 24
Author(s):  
Brian Heubel ◽  
Anja Nohe

The osteogenic effects of Bone Morphogenetic Proteins (BMPs) were delineated in 1965 when Urist et al. showed that BMPs could induce ectopic bone formation. In subsequent decades, the effects of BMPs on bone formation and maintenance were established. BMPs induce proliferation in osteoprogenitor cells and increase mineralization activity in osteoblasts. The role of BMPs in bone homeostasis and repair led to the approval of BMP2 by the Federal Drug Administration (FDA) for anterior lumbar interbody fusion (ALIF) to increase the bone formation in the treated area. However, the use of BMP2 for treatment of degenerative bone diseases such as osteoporosis is still uncertain as patients treated with BMP2 results in the stimulation of not only osteoblast mineralization, but also osteoclast absorption, leading to early bone graft subsidence. The increase in absorption activity is the result of direct stimulation of osteoclasts by BMP2 working synergistically with the RANK signaling pathway. The dual effect of BMPs on bone resorption and mineralization highlights the essential role of BMP-signaling in bone homeostasis, making it a putative therapeutic target for diseases like osteoporosis. Before the BMP pathway can be utilized in the treatment of osteoporosis a better understanding of how BMP-signaling regulates osteoclasts must be established.


Development ◽  
1998 ◽  
Vol 125 (23) ◽  
pp. 4595-4605 ◽  
Author(s):  
T.G. Sykes ◽  
A.R. Rodaway ◽  
M.E. Walmsley ◽  
R.K. Patient

In Xenopus, the dorsoventral axis is patterned by the interplay between active signalling in ventral territories, and secreted antagonists from Spemann's organiser. Two signals are important in ventral cells, bone morphogenetic protein-4 (BMP-4) and Wnt-8. BMP-4 plays a conserved role in patterning the vertebrate dorsoventral axis, whilst the precise role of Wnt-8 and its relationship with BMP-4, are still unclear. Here we have investigated the role played by the GATA family of transcription factors, which are expressed in ventral mesendoderm during gastrulation and are required for the differentiation of blood and endodermal tissues. Injection ventrally of a dominant-interfering GATA factor (called G2en) induced the formation of secondary axes that phenocopy those induced by the dominant-negative BMP receptor. However, unlike inhibiting BMP signalling, inhibiting GATA activity in the ectoderm does not lead to neuralisation. In addition, analysis of gene expression in G2en injected embryos reveals that at least one known target gene for BMP-4, the homeobox gene Vent-2, is unaffected. In contrast, the expression of Wnt-8 and the homeobox gene Vent-1 is suppressed by G2en, whilst the organiser-secreted BMP antagonist chordin becomes ectopically expressed. These data therefore suggest that GATA activity is essential for ventral cell fate and that subsets of ventralising and dorsalising genes require GATA activity for their expression and suppression, respectively. Finally, using G2en, we show that suppression of Wnt-8 expression, in conjunction with blocked BMP signalling, does not lead to head formation, suggesting that the head-suppressing Wnt signal may not be Wnt-8.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Jonathan W. Lowery ◽  
Brice Brookshire ◽  
Vicki Rosen

Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-βfamily of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-βpathways.


2020 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Matthew J Borok ◽  
Despoina Mademtzoglou ◽  
Frederic Relaix

The bone morphogenetic protein (BMP) pathway is best known for its role in promoting bone formation, however it has been shown to play important roles in both development and regeneration of many different tissues. Recent work has shown that the BMP proteins have a number of functions in skeletal muscle, from embryonic to postnatal development. Furthermore, complementary studies have recently demonstrated that specific components of the pathway are required for efficient muscle regeneration.


Development ◽  
2000 ◽  
Vol 127 (13) ◽  
pp. 2853-2862 ◽  
Author(s):  
G.J. Kim ◽  
A. Yamada ◽  
H. Nishida

The major mesodermal tissues of ascidian larvae are muscle, notochord and mesenchyme. They are derived from the marginal zone surrounding the endoderm area in the vegetal hemisphere. Muscle fate is specified by localized ooplasmic determinants, whereas specification of notochord and mesenchyme requires inducing signals from endoderm at the 32-cell stage. In the present study, we demonstrated that all endoderm precursors were able to induce formation of notochord and mesenchyme cells in presumptive notochord and mesenchyme blastomeres, respectively, indicating that the type of tissue induced depends on differences in the responsiveness of the signal-receiving blastomeres. Basic fibroblast growth factor (bFGF), but not activin A, induced formation of mesenchyme cells as well as notochord cells. Treatment of mesenchyme-muscle precursors isolated from early 32-cell embryos with bFGF promoted mesenchyme fate and suppressed muscle fate, which is a default fate assigned by the posterior-vegetal cytoplasm (PVC) of the eggs. The sensitivity of the mesenchyme precursors to bFGF reached a maximum at the 32-cell stage, and the time required for effective induction of mesenchyme cells was only 10 minutes, features similar to those of notochord induction. These results support the idea that the distinct tissue types, notochord and mesenchyme, are induced by the same signaling molecule originating from endoderm precursors. We also demonstrated that the PVC causes the difference in the responsiveness of notochord and mesenchyme precursor blastomeres. Removal of the PVC resulted in loss of mesenchyme and in ectopic notochord formation. In contrast, transplantation of the PVC led to ectopic formation of mesenchyme cells and loss of notochord. Thus, in normal development, notochord is induced by an FGF-like signal in the anterior margin of the vegetal hemisphere, where PVC is absent, and mesenchyme is induced by an FGF-like signal in the posterior margin, where PVC is present. The whole picture of mesodermal patterning in ascidian embryos is now known. We also discuss the importance of FGF induced asymmetric divisions, of notochord and mesenchyme precursor blastomeres at the 64-cell stage.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Xi Li ◽  
Xinchun Pi

Low density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional member of the LDL receptor family, impacting a variety of biological processes such as lipid metabolism, endocytosis and signal transduction. However, the role of LRP1 in endothelium was almost unknown. Until recently we discovered that LRP1 is a novel regulator of bone morphogenetic protein (Bmp) signaling through its association with the extracellular modulator-Bmper (Bmp-binding endothelial cell precursor-derived regulator) and regulates zebrafish vascular development. Here we studied the functional roles of LRP1 in mammalian system by performing cell culture studies with endothelial cells (ECs) and analyzing angiogenic defects in oxygen-induced retinopathy model with LRP1flox/flox;Tie2-Cre+/- mice (EC-LRP1 KO). In MECs, we observed that the activation of Src, ERK and tyrosine phosphorylation of multiple proteins were induced by Bmper and this activation was LRP1-dependent since LRP1 knockdown inhibited their activation. However, this Bmper-induced activation was not blocked by Bmp4 neutralized antibody, which suggests that LRP1 is required for Bmp4-independent signaling for Bmper. These data also indicate that Bmper and LRP1 is a novel ligand receptor pair. Moreover, we observed that LRP1 protein was induced in response to 1% hypoxia in both mouse ECs (MECs) and human retinal microvascular endothelial cells, suggesting that LRP1 is required for hypoxia induced endothelial function. In hypoxia condition, EC-LRP1 KO mice resulted in accelerated angiogenesis in retinal endothelial cells, similar to the pattern of Bmper deleted mice. Therefore, we identify that the Bmper/LRP1 signaling is a novel signaling pathway in endothelial cells and their activity regulates angiogenic responses during oxygen-induced retinopathy. This study provides mechanistic insights for angiogenesis-related pathophysiologic conditions.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Xiangzhen Sui ◽  
Dan Li ◽  
Nadia Hedhli ◽  
Hongyu Qiu ◽  
Vinciane Gaussin ◽  
...  

The bone morphogenetic protein (BMP) pathway is a major signaling mechanism during cardiac development but it has no clear function in the post-natal heart. Here, we tested the hypothesis that BMP mediates the physiological effect of the cardiac chaperone H11Kinase/Hsp22 (H11K). Expression of H11K increases during both cardiac ischemia and overload, and its cardiac-specific over-expression in a transgenic (TG) mouse is sufficient to provide major protection against ischemia and to promote cardiac cell growth, which involves the activation of phosphatidylinositol-3-kinase (PI3K) and of its effector Akt. We tested whether H11K-induced activation of PI3K is mediated by BMP. Microarray comparison between hearts from TG and wild type (WT) mice showed an up-regulation of the BMP receptor subunits Alk3 and BMPR-II, as well as of the BMP receptor ligand BMP4, which was confirmed at the protein level (P<0.01 vs WT). Activation of the BMP pathway in TG mice was confirmed by increased phosphorylation of the canonical BMP effectors Smad 1/5/8 (P<0.01 vs WT). The mechanism was further studied in isolated cardiac myocytes. Adeno-mediated over-expression of H11K was accompanied by significant 2–3-fold increase in PI3K activity, phospho-Akt, Smad 1/5/8 phosphorylation and cell growth as measured by [3H]phenylalanine incorporation, and by a 70% reduction in H2O2-mediated apoptosis (all values, P<0.01 vs control). All these changes mediated by H11K in myocytes were abolished upon addition of the BMP antagonist noggin. In pull-down experiments, H11K co-precipitated with both Alk3 and BMPR-II, and increased the association of these two subunits into a functional receptor. Accordingly, Smad 1/5/8 phosphorylation in presence of BMP4 was enhanced by 5-fold upon H11K over-expression, whereas it was decreased by 3-fold upon H11K knockdown (both, P<0.01 vs control), which shows that H11K potentiates the BMP receptor signaling pathway. Therefore, potentiation of the BMP receptor pathway by H11K promotes the activation of the PI3K/Akt pathway and dictates the physiological effects of H11K on cardiac cell growth and survival, which shows a novel role for BMP signaling in post-natal heart. This research has received full or partial funding support from the American Heart Association, AHA National Center.


2020 ◽  
Vol 82 (1) ◽  
pp. 251-273 ◽  
Author(s):  
Yongchun Zhang ◽  
Jianwen Que

The bone morphogenetic protein (BMP) pathway is essential for the morphogenesis of multiple organs in the digestive system. Abnormal BMP signaling has also been associated with disease initiation and progression in the gastrointestinal (GI) tract and associated organs. Recent studies using animal models, tissue organoids, and human pluripotent stem cells have significantly expanded our understanding of the roles played by BMPs in the development and homeostasis of GI organs. It is clear that BMP signaling regulates GI function and disease progression that involve stem/progenitor cells and inflammation in a tissue-specific manner. In this review we discuss these new findings with a focus on the esophagus, stomach, and intestine.


Sign in / Sign up

Export Citation Format

Share Document