An FGF signal from endoderm and localized factors in the posterior-vegetal egg cytoplasm pattern the mesodermal tissues in the ascidian embryo

Development ◽  
2000 ◽  
Vol 127 (13) ◽  
pp. 2853-2862 ◽  
Author(s):  
G.J. Kim ◽  
A. Yamada ◽  
H. Nishida

The major mesodermal tissues of ascidian larvae are muscle, notochord and mesenchyme. They are derived from the marginal zone surrounding the endoderm area in the vegetal hemisphere. Muscle fate is specified by localized ooplasmic determinants, whereas specification of notochord and mesenchyme requires inducing signals from endoderm at the 32-cell stage. In the present study, we demonstrated that all endoderm precursors were able to induce formation of notochord and mesenchyme cells in presumptive notochord and mesenchyme blastomeres, respectively, indicating that the type of tissue induced depends on differences in the responsiveness of the signal-receiving blastomeres. Basic fibroblast growth factor (bFGF), but not activin A, induced formation of mesenchyme cells as well as notochord cells. Treatment of mesenchyme-muscle precursors isolated from early 32-cell embryos with bFGF promoted mesenchyme fate and suppressed muscle fate, which is a default fate assigned by the posterior-vegetal cytoplasm (PVC) of the eggs. The sensitivity of the mesenchyme precursors to bFGF reached a maximum at the 32-cell stage, and the time required for effective induction of mesenchyme cells was only 10 minutes, features similar to those of notochord induction. These results support the idea that the distinct tissue types, notochord and mesenchyme, are induced by the same signaling molecule originating from endoderm precursors. We also demonstrated that the PVC causes the difference in the responsiveness of notochord and mesenchyme precursor blastomeres. Removal of the PVC resulted in loss of mesenchyme and in ectopic notochord formation. In contrast, transplantation of the PVC led to ectopic formation of mesenchyme cells and loss of notochord. Thus, in normal development, notochord is induced by an FGF-like signal in the anterior margin of the vegetal hemisphere, where PVC is absent, and mesenchyme is induced by an FGF-like signal in the posterior margin, where PVC is present. The whole picture of mesodermal patterning in ascidian embryos is now known. We also discuss the importance of FGF induced asymmetric divisions, of notochord and mesenchyme precursor blastomeres at the 64-cell stage.

Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 343-354
Author(s):  
J. R. Whittaker

This research shows that myoplasmic crescent material of the ascidian egg has both functional autonomy and functional specificity in establishing the differentiation pathway of muscle lineage cells. The cytoplasmic segregation pattern in eggs of Styela plicata was altered by compression of the embryos during third cleavage. This caused a meridional division instead of the normal equatorial third cleavage; first and second cleavages are meridional. Since eggs of S. plicata have a pronounced yellow myoplasmic crescent, one observes directly that third cleavage under compression resulted in a flat 8-cell stage with four cells containing yellow myoplasm instead of the two myoplasm-containing cells that would be formed by normal equatorial division at third cleavage. If such altered 8-cell-stage embryos were released from compression and kept from undergoing further divisions by continuous treatment with cytochalasin B, some embryos eventually developed histospecific acetylcholinesterase in three and four cells instead of in just the two muscle lineage cells found in cleavage-arrested normal 8-cell stages. The wider myoplasmic distribution effected by altering the division plane at third cleavage apparently caused a change in developmental fate of the extra cells receiving myoplasm. This meridional third cleavage also resulted in a changed nuclear lineage pattern. Two nuclei that would ordinarily be in ectodermal lineage cells after third cleavage were now associated with yellow myoplasm. Acetylcholinesterase development in these cells demonstrates that nuclear lineages are not responsible for muscle acetylcholinesterase development in the ascidian embryo.


Development ◽  
2002 ◽  
Vol 129 (7) ◽  
pp. 1729-1738 ◽  
Author(s):  
Kaoru S. Imai ◽  
Nori Satoh ◽  
Yutaka Satou

In early Ciona savignyi embryos, nuclear localization of β-catenin is the first step of endodermal cell specification, and triggers the activation of various target genes. A cDNA for Cs-FGF4/6/9, a gene activated downstream of β-catenin signaling, was isolated and shown to encode an FGF protein with features of both FGF4/6 and FGF9/20. The early embryonic expression of Cs-FGF4/6/9 was transient and the transcript was seen in endodermal cells at the 16- and 32-cell stages, in notochord and muscle cells at the 64-cell stage, and in nerve cord and muscle cells at the 110-cell stage; the gene was then expressed again in cells of the nervous system after neurulation. When the gene function was suppressed with a specific antisense morpholino oligo, the differentiation of mesenchyme cells was completely blocked, and the fate of presumptive mesenchyme cells appeared to change into that of muscle cells. The inhibition of mesenchyme differentiation was abrogated by coinjection of the morpholino oligo and synthetic Cs-FGF4/6/9 mRNA. Downregulation of β-catenin nuclear localization resulted in the absence of mesenchyme cell differentiation due to failure of the formation of signal-producing endodermal cells. Injection of synthetic Cs-FGF4/6/9 mRNA in β-catenin-downregulated embryos evoked mesenchyme cell differentiation. These results strongly suggest that Cs-FGF4/6/9 produced by endodermal cells acts an inductive signal for the differentiation of mesenchyme cells. On the other hand, the role of Cs-FGF4/6/9 in the induction of notochord cells is partial; the initial process of the induction was inhibited by Cs-FGF4/6/9 morpholino oligo, but notochord-specific genes were expressed later to form a partial notochord.


Development ◽  
2001 ◽  
Vol 128 (14) ◽  
pp. 2629-2638 ◽  
Author(s):  
Sébastien Darras ◽  
Hiroki Nishida

The 40 notochord cells of the ascidian tadpole invariably arise from two different lineages: the primary (A-line) and the secondary (B-line) lineages. It has been shown that the primary notochord cells are induced by presumptive endoderm blastomeres between the 24-cell and the 64-cell stage. Signaling through the fibroblast growth factor (FGF) pathway is required for this induction. We have investigated the role of the bone morphogenetic protein (BMP) pathway in ascidian notochord formation. HrBMPb (the ascidian BMP2/4 homologue) is expressed in the anterior endoderm at the 44-cell stage before the completion of notochord induction. The BMP antagonist Hrchordin is expressed in a complementary manner in all surrounding blastomeres and appears to be a positive target of the BMP pathway. Unexpectedly, chordin overexpression reduced formation of both primary and secondary notochord. Conversely, primary notochord precursors isolated prior to induction formed notochord in presence of BMP-4 protein. While bFGF protein had a similar activity, notochord precursors showed a different time window of competence to respond to BMP-4 and bFGF. Our data are consistent with bFGF acting from the 24-cell stage, while BMP-4 acts during the 44-cell stage. However, active FGF signaling was also required for induction by BMP-4. In the secondary lineage, notochord specification also required two inducing signals: an FGF signal from anterior and posterior endoderm from the 24-cell stage and a BMP signal from anterior endoderm during the 44-cell stage.


2021 ◽  
Vol 13 (1) ◽  
pp. 152
Author(s):  
Haklim Choi ◽  
Xiong Liu ◽  
Gonzalo Gonzalez Abad ◽  
Jongjin Seo ◽  
Kwang-Mog Lee ◽  
...  

Clouds act as a major reflector that changes the amount of sunlight reflected to space. Change in radiance intensity due to the presence of clouds interrupts the retrieval of trace gas or aerosol properties from satellite data. In this paper, we developed a fast and robust algorithm, named the fast cloud retrieval algorithm, using a triplet of wavelengths (469, 477, and 485 nm) of the O2–O2 absorption band around 477 nm (CLDTO4) to derive the cloud information such as cloud top pressure (CTP) and cloud fraction (CF) for the Geostationary Environment Monitoring Spectrometer (GEMS). The novel algorithm is based on the fact that the difference in the optical path through which light passes with regard to the altitude of clouds causes a change in radiance due to the absorption of O2–O2 at the three selected wavelengths. To reduce the time required for algorithm calculations, the look-up table (LUT) method was applied. The LUT was pre-constructed for various conditions of geometry using Vectorized Linearized Discrete Ordinate Radiative Transfer (VLIDORT) to consider the polarization of the scattered light. The GEMS was launched in February 2020, but the observed data of GEMS have not yet been widely released. To evaluate the performance of the algorithm, the retrieved CTP and CF using observational data from the Global Ozone Monitoring Experiment-2 (GOME-2), which cover the spectral range of GEMS, were compared with the results of the Fast Retrieval Scheme for Clouds from the Oxygen A band (FRESCO) algorithm, which is based on the O2 A-band. There was good agreement between the results, despite small discrepancies for low clouds.


1984 ◽  
Vol 32 (11) ◽  
pp. 1234-1237 ◽  
Author(s):  
C S Kim ◽  
J M Lauder ◽  
T H Joh ◽  
R M Pratt

Glucocorticoid receptors have been localized immunocytochemically in the developing mouse secondary palatal shelves and in cultured human embryonic palatal mesenchyme cells. In the midgestation embryo, receptors are found in the highest concentration in the palatal mesenchymal cells, suggesting that they play a major role in normal development as well as in glucocorticoid-induced cleft palate. The presence of these receptors in cultured human embryonic palatal cells also suggests that development of the human secondary palate may be dependent on glucocorticoids.


2009 ◽  
Vol 17 (1) ◽  
pp. 85-105 ◽  
Author(s):  
Walter H. Hirtle

Abstract This is an attempt to discern more clearly the underlying or POTENTIAL meaning of the simple form of the English verb, described in Hirtle 1967 as 'perfective'. Vendler's widely accepted classification of events into ACCOMPLISHMENTS, ACHIEVEMENTS, ACTIVITIES, and STATES is examined from the point of view of the time necessarily contained between the beginning and end of any event, i.e. EVENT TIME as represented by the simple form. This examination justifies the well known dynamic/stative dichotomy by showing that event time is evoked in two different ways, that, in fact, the simple form has two ACTUAL significates. Further reflection on the difference between the two types thus expressed—developmental or action-like events and non-developmental or state-like events—leads to the conclusion that the simple form provides a representation of the time required to situate all the impressions involved in the notional or lexical import of the verb.


Development ◽  
1999 ◽  
Vol 126 (3) ◽  
pp. 423-434 ◽  
Author(s):  
M.C. Lane ◽  
W.C. Smith

The marginal zone in Xenopus laevis is proposed to be patterned with dorsal mesoderm situated near the upper blastoporal lip and ventral mesoderm near the lower blastoporal lip. We determined the origins of the ventralmost mesoderm, primitive blood, and show it arises from all vegetal blastomeres at the 32-cell stage, including blastomere C1, a progenitor of Spemann's organizer. This demonstrates that cells located at the upper blastoporal lip become ventral mesoderm, not solely dorsal mesoderm as previously believed. Reassessment of extant fate maps shows dorsal mesoderm and dorsal endoderm descend from the animal region of the marginal zone, whereas ventral mesoderm descends from the vegetal region of the marginal zone, and ventral endoderm descends from cells located vegetal of the bottle cells. Thus, the orientation of the dorsal-ventral axis of the mesoderm and endoderm is rotated 90(degrees) from its current portrayal in fate maps. This reassessment leads us to propose revisions in the nomenclature of the marginal zone and the orientation of the axes in pre-gastrula Xenopus embryos.


Development ◽  
1982 ◽  
Vol 70 (1) ◽  
pp. 133-152
Author(s):  
Susan J. Kimber ◽  
M. Azim ◽  
H. Surani ◽  
Sheila C. Barton

Whole 8-cell morulae can be aggregated with isolated inner cell masses from blastocysts. On examining semithin light microscope sections of such aggregates we found that cells of the morula changed shape and spread over the surface of the ICM, thus translocating it to the inside of the aggregate. Using single cells from 8-cell embryos in combination with single cells from other stage embryos or isolated ICMs we show that 1/8 blastomeres spread over other cells providing a suitably adhesive surface. The incidence of spreading is high with inner cells from 16-cell embryos (56 %) and 32-cell embryos (62%) and isolated inner cell masses (64%). In contrast, the incidence of spreading of 1/8 blastomeres is low over outer cells from 16-cell embryos (26%) and 32-cell embryos (13%). Blastomeres from 8-cell embryos do not spread over unfertilized 1-cell eggs, 1/2 or 1/4 cells or trophectoderm cells contaminating isolated ICMs. When 1/8 cells are aggregated in pairs they flatten on one another (equal spreading) as occurs at compaction in whole 8-cell embryos. However, if 1/8 is allowed to divide to 2/16 in culture one of the cells engulfs the other (51-62/ pairs). Based on the ideas of Holtfreter (1943) and Steinberg (1964,1978) these results are interpreted to indicate an increase in adhesiveness at the 8-cell stage as well as cytoskeletal mobilization. Following the 8-cell stage there is an increase in adhesiveness of inside cells while the outside cells decrease in adhesiveness. The difference in adhesiveness between inside and outside cells in late morulae is probably central to the divergent differentiation of (inner) ICM and (outer) trophectoderm cell populations.


2019 ◽  
Vol 4 (4) ◽  
pp. 421-430
Author(s):  
Gusri Akhyar Ibrahim ◽  
Arinal Hamni ◽  
Wahyu Budiono

MAKING AND TESTING OF SKEWERS CUTTING MACHINES. In Indonesia there are more than 100 types of bamboo that can be used by craftsmen, one of which is skewers. Skewers are promising commodities for business opportunities. The process of producing skewers are started from cutting down the bamboo, cutting bamboo, splitting bamboo, shriveling bamboo to become a stick skewer after that is done cutting the skewer sticks, drying sticks, polishing the sticks skewers and chopping sticks. The process of cutting a stick skewer which is done at this time is still using a simple tool, so the results are bad and the cutting time is very long. To maintain the quality of the results of a good stick skewer sticks and to increase the productivity of the stick skewers, the process of producing and testing of a skewer stick cutting machine is done. The method to produce a skewer stick cutting machine is done by designing the tool, determining the material to be used then making it. This skewer stick cutting machine is made with a press system and vertical cutting directions. From the results of testing the skewer stick cutting machine obtained that the quality of skewer cutting is good and the time required to cut is only 10 seconds. the difference is about 50 seconds faster than the hand saws used, so as to increase the productivity of the skewer sticks. The cutting machine was impelemented at home industry at Sidomulyo of South Lampung. Using the machine has increased productity and also quality of skewers.


1968 ◽  
Vol 23 (3) ◽  
pp. 757-758 ◽  
Author(s):  
Herman S. Napier

The pooling of abilities or nominal groups technique was used in the present experiment to compare individuals with two-person groups on a picture-puzzle task. When size of the task was limited to a part (one-fourth) of the puzzle or the duration of the task was restricted to a few (four) trials, no difference between individuals and groups was evident. However, as task size and number of trials increased, groups performed at a significantly higher level than individuals. The difference was discussed in terms of information available to group members and the time required for group formation.


Sign in / Sign up

Export Citation Format

Share Document