Independent regulation of initiation and maintenance phases ofHoxa3expression in the vertebrate hindbrain involve auto- and cross-regulatory mechanisms

Development ◽  
2001 ◽  
Vol 128 (18) ◽  
pp. 3595-3607 ◽  
Author(s):  
Miguel Manzanares ◽  
Sophie Bel-Vialar ◽  
Linda Ariza-McNaughton ◽  
Elisabetta Ferretti ◽  
Heather Marshall ◽  
...  

During development of the vertebrate hindbrain, Hox genes play multiples roles in the segmental processes that regulate anteroposterior (AP) patterning. Paralogous Hox genes, such as Hoxa3, Hoxb3 and Hoxd3, generally have very similar patterns of expression, and gene targeting experiments have shown that members of paralogy group 3 can functionally compensate for each other. Hence, distinct functions for individual members of this family may primarily depend upon differences in their expression domains. The earliest domains of expression of the Hoxa3 and Hoxb3 genes in hindbrain rhombomeric (r) segments are transiently regulated by kreisler, a conserved Maf b-Zip protein, but the mechanisms that maintain expression in later stages are unknown. In this study, we have compared the segmental expression and regulation of Hoxa3 and Hoxb3 in mouse and chick embryos to investigate how they are controlled after initial activation. We found that the patterns of Hoxa3 and Hoxb3 expression in r5 and r6 in later stages during mouse and chick hindbrain development were differentially regulated. Hoxa3 expression was maintained in r5 and r6, while Hoxb3 was downregulated. Regulatory comparisons of cis-elements from the chick and mouse Hoxa3 locus in both transgenic mouse and chick embryos have identified a conserved enhancer that mediates the late phase of Hoxa3 expression through a conserved auto/cross-regulatory loop. This block of similarity is also present in the human and horn shark loci, and contains two bipartite Hox/Pbx-binding sites that are necessary for its in vivo activity in the hindbrain. These HOX/PBC sites are positioned near a conserved kreisler-binding site (KrA) that is involved in activating early expression in r5 and r6, but their activity is independent of kreisler. This work demonstrates that separate elements are involved in initiating and maintaining Hoxa3 expression during hindbrain segmentation, and that it is regulated in a manner different from Hoxb3 in later stages. Together, these findings add further strength to the emerging importance of positive auto- and cross-regulatory interactions between Hox genes as a general mechanism for maintaining their correct spatial patterns in the vertebrate nervous system.

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii409-iii409
Author(s):  
Dong Wang ◽  
Angela Pierce ◽  
Bethany Veo ◽  
Susan Fosmire ◽  
Krishna Madhavan ◽  
...  

Abstract Group 3 medulloblastoma (MB) is often accompanied by MYC amplification and has a higher rate of metastatic disease. So, it is critical to have more effective therapies for high MYC expressing sub-groups. Here we report that FBXW7, a substrate recognition component of the SKP1-CUL1-Fbox (SCF) E3 ligase, interacts with and targets c-MYC for polyubiquitination and proteasomal degradation. FBXW7 shows lower expression level in MYC-driven MB compared with other MB subgroups suggesting activity as a tumor suppressor. Genomic deletion or mutation of Fbxw7 has frequently been identified in many human cancers but not in MB. We demonstrate that overexpression of Fbxw7 in MB cells induces apoptosis and suppresses proliferation in vitro and in vivo. Both phospho-deficient (T205A) and phosphomimetic aspartic acid (T205D) mutants deactivate its tumor suppressor function suggesting a conformational change of its protein structure. Mechanistically, PLK1 kinase specifically phosphorylates FBXW7 and promotes its auto-polyubiquitination and proteasomal degradation, counteracting FBXW7-mediated degradation of oncogene substrates, including c-MYC and PLK1. Chip-Seq results show stabilized c-MYC in turn directly activates PLK1 and FBXW7 transcription, constituting a feedforward regulatory loop. Co-immunoprecipitation demonstrates that FBXW7 directly binds to PLK1 and c-MYC, facilitating their protein degradation by promoting the ubiquitination of both proteins. Furthermore, we show that FBXW7 protein can be stabilized by various kinase inhibitors, proposing a mechanism of kinase-targeted agents to treat MYC-driven MB. These results collectively demonstrate how kinase inhibition stabilizes the tumor suppressor FBXW7 in MYC-driven MB, thus revealing an important function of FBXW7 in suppressing MB progression.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 387
Author(s):  
Dong Wang ◽  
Angela Pierce ◽  
Bethany Veo ◽  
Susan Fosmire ◽  
Etienne Danis ◽  
...  

Polo-like kinase 1 (PLK1) is highly expressed in group 3 medulloblastoma (MB), and it has been preclinically validated as a cancer therapeutic target in medulloblastoma. Here, we demonstrate that PLK1 inhibition with PCM-075 or BI6727 significantly reduces the growth of MB cells and causes a decrease of c-MYC mRNA and protein levels. We show that MYC activates PLK1 transcription, while the inhibition of PLK1 suppresses MB tumor development and causes a decrease in c-MYC protein level by suppressing FBXW7 auto poly-ubiquitination. FBXW7 physically interacts with PLK1 and c-MYC, facilitating their protein degradation by promoting ubiquitination. These results demonstrate a PLK1-FBXW7-MYC regulatory loop in MYC-driven medulloblastoma. Moreover, FBXW7 is significantly downregulated in group 3 patient samples. The overexpression of FBXW7 induced apoptosis and suppressed proliferation in vitro and in vivo, while constitutive phosphorylation mutation attenuated its tumor suppressor function. Altogether, these findings demonstrated that PLK1 inhibition stabilizes FBXW7 in MYC-driven MB, thus revealing an important function of FBXW7 in suppressing medulloblastoma progression.


Author(s):  
M.J.C. Hendrix ◽  
D.E. Morse

Atrial septal defects are considered the most common congenital cardiac anomaly occurring in humans. In studying the normal sequential development of the atrial septum, chick embryos of the White Leghorn strain were prepared for scanning electron microscopy and the results were then extrapolated to the human heart. One-hundred-eighty chick embryos from 2 to 21 days of age were removed from their shells and immersed in cold cacodylate-buffered aldehyde fixative . Twenty-four embryos through the first week post-hatching were perfused in vivo using cold cacodylate-buffered aldehyde fixative with procaine hydrochloride. The hearts were immediately dissected free and remained in the fixative a minimum of 2 hours. In most cases, the lateral atrial walls were removed during this period. The tissues were then dehydrated using a series of ascending grades of ethanol; final dehydration of the tissues was achieved via the critical point drying method followed by sputter-coating with goldpalladium.


VASA ◽  
2020 ◽  
Vol 49 (4) ◽  
pp. 281-284
Author(s):  
Atıf Yolgosteren ◽  
Gencehan Kumtepe ◽  
Melda Payaslioglu ◽  
Cuneyt Ozakin

Summary. Background: Prosthetic vascular graft infection (PVGI) is a complication with high mortality. Cyanoacrylate (CA) is an adhesive which has been used in a number of surgical procedures. In this in-vivo study, we aimed to evaluate the relationship between PVGI and CA. Materials and methods: Thirty-two rats were equally divided into four groups. Pouch was formed on back of rats until deep fascia. In group 1, vascular graft with polyethyleneterephthalate (PET) was placed into pouch. In group 2, MRSA strain with a density of 1 ml 0.5 MacFarland was injected into pouch. In group 3, 1 cm 2 vascular graft with PET piece was placed into pouch and MRSA strain with a density of 1 ml 0.5 MacFarland was injected. In group 4, 1 cm 2 vascular graft with PET piece impregnated with N-butyl cyanoacrylate-based adhesive was placed and MRSA strain with a density of 1 ml 0.5 MacFarland was injected. All rats were scarified in 96th hour, culture samples were taken where intervention was performed and were evaluated microbiologically. Bacteria reproducing in each group were numerically evaluated based on colony-forming unit (CFU/ml) and compared by taking their average. Results: MRSA reproduction of 0 CFU/ml in group 1, of 1410 CFU/ml in group 2, of 180 200 CFU/ml in group 3 and of 625 300 CFU/ml in group 4 was present. A statistically significant difference was present between group 1 and group 4 (p < 0.01), between group 2 and group 4 (p < 0.01), between group 3 and group 4 (p < 0.05). In terms of reproduction, no statistically significant difference was found in group 1, group 2, group 3 in themselves. Conclusions: We observed that the rate of infection increased in the cyanoacyrylate group where cyanoacrylate was used. We think that surgeon should be more careful in using CA in vascular surgery.


2021 ◽  
Author(s):  
Xiyu Ma ◽  
Chao Zhang ◽  
Do Young Kim ◽  
Yanyan Huang ◽  
Elizabeth Chatt ◽  
...  

Abstract Protein ubiquitylation profoundly expands proteome functionality and diversifies cellular signaling processes, with recent studies providing ample evidence for its importance to plant immunity. To gain a proteome-wide appreciation of ubiquitylome dynamics during immune recognition, we employed a two-step affinity enrichment protocol based on a 6His-tagged ubiquitin (Ub) variant coupled with high sensitivity mass spectrometry to identify Arabidopsis proteins rapidly ubiquitylated upon plant perception of the microbe-associated molecular pattern (MAMP) peptide flg22. The catalog from 2-week-old seedlings treated for 30 minutes with flg22 contained 690 conjugates, 64 Ub footprints, and all seven types of Ub linkages, and included previously uncharacterized conjugates of immune components. In vivo ubiquitylation assays confirmed modification of several candidates upon immune elicitation, and revealed distinct modification patterns and dynamics for key immune components, including poly- and monoubiquitylation, as well as induced or reduced levels of ubiquitylation. Gene ontology and network analyses of the collection also uncovered rapid modification of the Ub-proteasome system itself, suggesting a critical auto-regulatory loop necessary for an effective MAMP-triggered immune response and subsequent disease resistance. Included targets were UBIQUITIN-CONJUGATING ENZYME 13 (UBC13) and proteasome component REGULATORY PARTICLE NON-ATPASE SUBUNIT 8b (RPN8b), whose subsequent biochemical and genetic analyses implied negative roles in immune elicitation. Collectively, our proteomic analyses further strengthened the connection between ubiquitylation and flg22-based immune signaling, identified components and pathways regulating plant immunity, and increased the database of ubiquitylated substrates in plants.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Kübra Taban ◽  
David Pauck ◽  
Mara Maue ◽  
Viktoria Marquardt ◽  
Hua Yu ◽  
...  

Abstract Medulloblastoma (MB) is the most common malignant brain tumor in children and is frequently metastatic at diagnosis. Treatment with surgery, radiation and multi-agent chemotherapy may leave survivors of these brain tumors with long-term deficits as a consequence. One of the four consensus molecular subgroups of MB is the MYC-driven group 3 MB, which is the most malignant type and has a poor prognosis under current therapy. Thus, it is important to discover more effective targeted therapeutic approaches. We conducted a high-throughput drug screening to identify novel compounds showing efficiency in group 3 MB using both clinically established inhibitors (n=196) and clinically-applicable compounds (n=464). More than 20 compounds demonstrated a significantly higher anti-tumoral effect in MYChigh (n=7) compared to MYClow (n=4) MB cell models. Among these compounds, Navitoclax and Clofarabine showed the strongest effect in inducing cell cycle arrest and apoptosis in MYChigh MB models. Furthermore, we show that Navitoclax, an orally bioavailable and blood-brain barrier passing anti-cancer drug, inhibits specifically Bcl-xL proteins. In line, we found a significant correlation between BCL-xL and MYC mRNA levels in 763 primary MB patient samples (Data source: “R2 https://hgserver1.amc.nl”). In addition, Navitoclax and Clofarabine have been tested in cells obtained from MB patient-derived-xenografts, which confirmed their specific efficacy in MYChigh versus MYClow MB. In summary, our approach has identified promising new drugs that significantly reduce cell viability in MYChigh compared to MYClow MB cell models. Our findings point to novel therapeutic vulnerabilities for MB that need to be further validated in vitro and in vivo.


1978 ◽  
Vol 57 (5-6) ◽  
pp. 685-690 ◽  
Author(s):  
J.L. Ash ◽  
R.J. Nikolai

Relaxation patterns for two orthodontic polyurethane-based elastics have been quantified in dry air and water bath environments and in vivo. Water bath simulation of in vivo behavior is apparently valid for up to a week following initial activation, but it becomes somewhat erroneous thereafter.


Author(s):  
Young-Min Han ◽  
Min Sun Kim ◽  
Juyeong Jo ◽  
Daiha Shin ◽  
Seung-Hae Kwon ◽  
...  

AbstractThe fine-tuning of neuroinflammation is crucial for brain homeostasis as well as its immune response. The transcription factor, nuclear factor-κ-B (NFκB) is a key inflammatory player that is antagonized via anti-inflammatory actions exerted by the glucocorticoid receptor (GR). However, technical limitations have restricted our understanding of how GR is involved in the dynamics of NFκB in vivo. In this study, we used an improved lentiviral-based reporter to elucidate the time course of NFκB and GR activities during behavioral changes from sickness to depression induced by a systemic lipopolysaccharide challenge. The trajectory of NFκB activity established a behavioral basis for the NFκB signal transition involved in three phases, sickness-early-phase, normal-middle-phase, and depressive-like-late-phase. The temporal shift in brain GR activity was differentially involved in the transition of NFκB signals during the normal and depressive-like phases. The middle-phase GR effectively inhibited NFκB in a glucocorticoid-dependent manner, but the late-phase GR had no inhibitory action. Furthermore, we revealed the cryptic role of basal GR activity in the early NFκB signal transition, as evidenced by the fact that blocking GR activity with RU486 led to early depressive-like episodes through the emergence of the brain NFκB activity. These results highlight the inhibitory action of GR on NFκB by the basal and activated hypothalamic-pituitary-adrenal (HPA)-axis during body-to-brain inflammatory spread, providing clues about molecular mechanisms underlying systemic inflammation caused by such as COVID-19 infection, leading to depression.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Natasha Kishore Pahuja ◽  
Rohit Shetty ◽  
Rudy M. M. A. Nuijts ◽  
Aarti Agrawal ◽  
Arkasubhra Ghosh ◽  
...  

Purpose.To study the corneal nerve morphology and its importance in unilateral keratoconus.Materials and Methods.In this prospective cross-sectional study, 33 eyes of 33 patients with keratoconus in one eye (Group 3) were compared with the other normal eye of the same patients (Group 2) and 30 eyes of healthy patients (Group 1). All patients underwent detailed ophthalmic examination followed by topography with Pentacam HR and in vivo confocal microscopy (IVCM). Five images obtained with IVCM were analyzed using an automated CCmetrics software version 1.0 for changes in subbasal plexus of nerves.Results.Intergroup comparison showed statistically significant reduction in corneal nerve fiber density (CNFD) and length (CNFL) in Group 3 as compared to Group 1 (p<0.001andp=0.001, resp.) and Group 2 (p=0.01andp=0.02, resp.). Though corneal nerve fiber length, diameter, area, width, corneal nerve branch density, and corneal total branch density were found to be higher in decentered cones, only the corneal nerve branch density (CNBD) was found to be statistically significant (p<0.01) as compared to centered cones.Conclusion.Quantitative changes in the corneal nerve morphology can be used as an imaging marker for the early diagnosis of keratoconus before the onset of refractive or topography changes.


2010 ◽  
Vol 84 (23) ◽  
pp. 12300-12314 ◽  
Author(s):  
Hanna-Mari Tervo ◽  
Oliver T. Keppler

ABSTRACT An immunocompetent, permissive, small-animal model would be valuable for the study of human immunodeficiency virus type 1 (HIV-1) pathogenesis and for the testing of drug and vaccine candidates. However, the development of such a model has been hampered by the inability of primary rodent cells to efficiently support several steps of the HIV-1 replication cycle. Although transgenesis of the HIV receptor complex and human cyclin T1 have been beneficial, additional late-phase blocks prevent robust replication of HIV-1 in rodents and limit the range of in vivo applications. In this study, we explored the HIV-1 susceptibility of rabbit primary T cells and macrophages. Envelope-specific and coreceptor-dependent entry of HIV-1 was achieved by expressing human CD4 and CCR5. A block of HIV-1 DNA synthesis, likely mediated by TRIM5, was overcome by limited changes to the HIV-1 gag gene. Unlike with mice and rats, primary cells from rabbits supported the functions of the regulatory viral proteins Tat and Rev, Gag processing, and the release of HIV-1 particles at levels comparable to those in human cells. While HIV-1 produced by rabbit T cells was highly infectious, a macrophage-specific infectivity defect became manifest by a complex pattern of mutations in the viral genome, only part of which were deamination dependent. These results demonstrate a considerable natural HIV-1 permissivity of the rabbit species and suggest that receptor complex transgenesis combined with modifications in gag and possibly vif of HIV-1 to evade species-specific restriction factors might render lagomorphs fully permissive to infection by this pathogenic human lentivirus.


Sign in / Sign up

Export Citation Format

Share Document