scholarly journals An absolute requirement for Cubitus interruptus in Hedgehog signaling

Development ◽  
2001 ◽  
Vol 128 (5) ◽  
pp. 733-742 ◽  
Author(s):  
N. Methot ◽  
K. Basler

Hedgehog (Hh) proteins play diverse organizing roles in animal development by regulating gene expression in responding cells. Several components of the Hh signal transduction pathway have been identified, yet their precise role in mediating the various outputs of the pathway is still poorly understood. The Gli homolog Cubitus interruptus (Ci) is involved in controlling the transcription of Drosophila Hh target genes and thus represents the most downstream component known in this pathway. We address the question of whether the Hh pathway is distally branched or, in other words, whether the regulation of Ci activity is the sole output of Hh signaling. Putative Ci-independent branches of Hh signaling are explored by analyzing the behavior of cells that lack Ci but have undergone maximal activation of the Hh transduction pathway due to the removal of Patched (Ptc). The analysis of target gene expression and morphogenetic read-outs of Hh in embryonic, larval and adult stages indicates that Ci is absolutely required for all examined aspects of Hh outputs. We interpret this as evidence against the existence of Ci-independent branches in the Hh signal transduction pathway and propose that most cases of apparent Ci/Gli-independent Hh output can be attributed to the derepression of target gene expression in the absence of Ci/Gli repressor function.

Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1157-1166
Author(s):  
John A Kiger ◽  
Cristin O'Shea

Abstract Hedgehog (Hh) activates a signal transduction pathway regulating Cubitus interruptus (Ci). In the absence of Hh, full-length Ci (Ci-155) is bound in a complex that includes Costal2 (Cos2) and Fused (Fu). Ci-155 is phosphorylated by protein kinase A (PKA), inducing proteolysis to Ci-75, a transcriptional repressor. Hh signaling blocks proteolysis and produces an activated Ci-155 transcriptional activator. The relationship between PKA and the Ci/Cos2/Fu complex is unclear. Here we examine Hh target gene expression caused by mutant forms of PKA regulatory (PKAr) and catalytic (PKAc) subunits and by the PKAc inhibitor PKI(1-31). The mutant PKAr*, defective in binding cAMP, is shown to activate Hh target genes solely through its ability to bind and inhibit endogenous PKAc. Surprisingly, PKAcA75, a catalytically impaired mutant, also activates Hh target genes. To account for this observation, we propose that PKAc phosphorylation targeting Ci-155 for proteolysis is regulated within a complex that includes PKAc and Ci-155 and excludes PKI(1-31). This complex may permit processive phosphorylation of Ci-155 molecules, facilitating their processing to Ci-75.


2003 ◽  
Vol 2 (5) ◽  
pp. 995-1002 ◽  
Author(s):  
Jeanette M. Quinn ◽  
Janette Kropat ◽  
Sabeeha Merchant

ABSTRACT The Cpx1 and Cyc6 genes of Chlamydomonas reinhardtii are activated in copper-deficient cells via a signal transduction pathway that requires copper response elements (CuREs) and a copper response regulator defined by the CRR1 locus. The two genes can also be activated by provision of nickel or cobalt ions in the medium. The response to nickel ions requires at least one CuRE and also CRR1 function, suggesting that nickel interferes with a component in the nutritional copper signal transduction pathway. Nickel does not act by preventing copper uptake/utilization because (i) holoplastocyanin formation is unaffected in Ni2+-treated cells and (ii) provision of excess copper cannot reverse the Ni-dependent activation of the target genes. The CuRE is sufficient for conferring Ni-responsive expression to a reporter gene, which suggests that the system has practical application as a vehicle for inducible gene expression. The inducer can be removed either by replacing the medium or by chelating the inducer with excess EDTA, either of which treatments reverses the activation of the target genes.


2013 ◽  
Vol 203 (4) ◽  
pp. 575-583 ◽  
Author(s):  
Zhao Zhang ◽  
Jing Feng ◽  
Chenyu Pan ◽  
Xiangdong Lv ◽  
Wenqing Wu ◽  
...  

The evolutionarily conserved Hedgehog (Hh) signaling pathway is transduced by the Cubitus interruptus (Ci)/Gli family of transcription factors that exist in two distinct repressor (CiR/GliR) and activator (CiA/GliA) forms. Aberrant activation of Hh signaling is associated with various human cancers, but the mechanism through which CiR/GliR properly represses target gene expression is poorly understood. Here, we used Drosophila melanogaster and zebrafish models to define a repressor function of Atrophin (Atro) in Hh signaling. Atro directly bound to Ci through its C terminus. The N terminus of Atro interacted with a histone deacetylase, Rpd3, to recruit it to a Ci-binding site at the decapentaplegic (dpp) locus and reduce dpp transcription through histone acetylation regulation. The repressor function of Atro in Hh signaling was dependent on Ci. Furthermore, Rerea, a homologue of Atro in zebrafish, repressed the expression of Hh-responsive genes. We propose that the Atro–Rpd3 complex plays a conserved role to function as a CiR corepressor.


Author(s):  
Philipp Moritz Fricke ◽  
Angelika Klemm ◽  
Michael Bott ◽  
Tino Polen

Abstract Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an l-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. Key points • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.


Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3607-3616 ◽  
Author(s):  
Y. Chen ◽  
J.R. Cardinaux ◽  
R.H. Goodman ◽  
S.M. Smolik

Hedgehog (HH) is an important morphogen involved in pattern formation during Drosophila embryogenesis and disc development. cubitus interruptus (ci) encodes a transcription factor responsible for transducing the hh signal in the nucleus and activating hh target gene expression. Previous studies have shown that CI exists in two forms: a 75 kDa proteolytic repressor form and a 155 kDa activator form. The ratio of these forms, which is regulated positively by hh signaling and negatively by PKA activity, determines the on/off status of hh target gene expression. In this paper, we demonstrate that the exogenous expression of CI that is mutant for four consensus PKA sites [CI(m1-4)], causes ectopic expression of wingless (wg) in vivo and a phenotype consistent with wg overexpression. Expression of CI(m1-4), but not CI(wt), can rescue the hh mutant phenotype and restore wg expression in hh mutant embryos. When PKA activity is suppressed by expressing a dominant negative PKA mutant, the exogenous expression of CI(wt) results in overexpression of wg and lethality in embryogenesis, defects that are similar to those caused by the exogenous expression of CI(m1-4). In addition, we demonstrate that, in cell culture, the mutation of any one of the three serine-containing PKA sites abolishes the proteolytic processing of CI. We also show that PKA directly phosphorylates the four consensus phosphorylation sites in vitro. Taken together, our results suggest that positive hh and negative PKA regulation of wg gene expression converge on the regulation of CI phosphorylation.


Cell ◽  
1999 ◽  
Vol 98 (3) ◽  
pp. 305-316 ◽  
Author(s):  
Chien-Huan Chen ◽  
Doris P von Kessler ◽  
Woojin Park ◽  
Baolin Wang ◽  
Yong Ma ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 401-401
Author(s):  
Aniruddha J Deshpande ◽  
Liying Chen ◽  
Kathrin M Bernt ◽  
Stuart Dias ◽  
Deepti Banka ◽  
...  

Abstract Abstract 401 MLL-fusion proteins induce changes in histone modifications that result in the abnormal and sustained expression of downstream oncogenic target genes. A number of recent studies have identified aberrant histone 3 lysine 79 (H3K79) methylation by the chromatin modifying enzyme DOT1L as an important epigenetic modification that sustains MLL-target gene expression. Aberrant H3K79 methylation has been shown to be necessary for oncogenic transformation mediated by a number of MLL-fusions. These recent findings have generated tremendous interest in H3K79 methylation as a therapeutic target in the MLL rearranged leukemias. The plant-homeodomain (PHD) and leucine zipper-containing protein AF10 biochemically interacts with DOT1L and is believed to influence H3K79 methylation. We generated conditional knockout mice in which the Dot1l-interacting octapeptide-motif leucine zipper (OM-LZ) domain of Af10 was flanked by LoxP sites. Deletion of the Af10OM-LZ domain with the Cre recombinase is predicted to abrogate the Af10-Dot1l interaction. Deletion of the Af10OM-LZ domain greatly reduced global H3K79 dimethylation as assessed by immunoblotting as well as mass spectrometry in Af10OM-LZ deleted HoxA9/Meis1a transformed cells. Given the importance of H3K79 methylation in MLL-rearranged leukemias, we sought to assess whether the transforming activity of the MLL-AF9 fusion gene was dependent on the Af10-Dot1l interaction. Using an MLL-AF9-IRES-GFP encoding retrovirus, we established immortalized blast-colony forming cultures from mouse lineage negative Sca-1 positive/Kit positive (LSK) bone marrow cells bearing floxed Af10OM-LZ alleles. Deletion of the Af10OM-LZ domain with Cre-recombinase dramatically reduced H3K79me2 on the MLL-target genes Hoxa5-10 and Meis1, leading to downregulation of these transcripts. We performed colony-forming cell (CFC) assays from MLL-AF9 transformed cells in the presence or absence of the Af10OM-LZ allele. In the first week, Af10OM-LZ deletion profoundly impaired the blast-colony forming potential of MLL-AF9 transformed LSKs and the only clones that could serially replate in subsequent passages had escaped Af10OM-LZ excision. Af10OM-LZ deleted colonies were very small and spread-out and showed morphological features of terminal myeloid differentiation. In contrast, HoxA9/Meis1 transformed LSK cells expanded normally in the absence of the Af10OM-LZ domain. These results demonstrate that the Af10OM-LZ, much like Dot1l, is critical for the in vitro transforming activity of the MLL-AF9 fusion gene, but does not non-specifically inhibit cellular proliferation. We then sought to investigate the potential role of the Af10OM-LZ domain in the in vivo leukemogenic activity of MLL-AF9. We generated primary MLL-AF9 leukemias from LSKs harboring floxed Af10OM-LZ alleles. Deletion of the Af10OM-LZ domain in cells explanted from the MLL-AF9 primary leukemias led to a significant increase in the disease latency in secondary recipient mice. Moreover, limiting dilution analysis of MLL-AF9 leukemias with or without the Af10OM-LZ domain demonstrated a >100 fold decrease in the frequency of leukemia initiating cells in the absence of the Af10OM-LZ domain. Microarray analysis showed that a vast majority of MLL-AF9 target genes were significantly downregulated in Af10OM-LZ deleted as compared to Af10OM-LZ wildtype MLL-AF9 leukemias. However, the Af10OM-LZ deleted cells could still eventually cause leukemia. This is intriguing given that Af10OM-LZ deletion, similar to Dot1l deletion, leads to a significant reduction in H3K79 dimethylation as well as MLL-target gene expression. A more detailed analysis of H3K79 methylation using mass spectrometry revealed that in contrast to H3K79 dimethylation, global levels of H3K79 mono-methylation were largely unchanged in Af10OM-LZ deleted cells. This suggests the residual MLL-AF9 target gene expression seen in Af10OM-LZ deleted cells is maintained by H3K79 monomethylation. Our results demonstrate a surprising role for Af10 in the conversion of H3K79 monomethylation to dimethylation and reveal the AF10-DOT1L interaction as an attractive therapeutic target in MLL-rearranged leukemias. Disclosures: Armstrong: Epizyme: Consultancy.


2007 ◽  
Vol 27 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Cynthia Timmers ◽  
Nidhi Sharma ◽  
Rene Opavsky ◽  
Baidehi Maiti ◽  
Lizhao Wu ◽  
...  

ABSTRACT E2F-mediated control of gene expression is believed to have an essential role in the control of cellular proliferation. Using a conditional gene-targeting approach, we show that the targeted disruption of the entire E2F activator subclass composed of E2f1, E2f2, and E2f3 in mouse embryonic fibroblasts leads to the activation of p53 and the induction of p53 target genes, including p21 CIP1 . Consequently, cyclin-dependent kinase activity and retinoblastoma (Rb) phosphorylation are dramatically inhibited, leading to Rb/E2F-mediated repression of E2F target gene expression and a severe block in cellular proliferation. Inactivation of p53 in E2f1-, E2f2-, and E2f3-deficient cells, either by spontaneous mutation or by conditional gene ablation, prevented the induction of p21 CIP1 and many other p53 target genes. As a result, cyclin-dependent kinase activity, Rb phosphorylation, and E2F target gene expression were restored to nearly normal levels, rendering cells responsive to normal growth signals. These findings suggest that a critical function of the E2F1, E2F2, and E2F3 activators is in the control of a p53-dependent axis that indirectly regulates E2F-mediated transcriptional repression and cellular proliferation.


Sign in / Sign up

Export Citation Format

Share Document