Teneurin 2 is expressed by the neurons of the thalamofugal visual system in situ and promotes homophilic cell-cell adhesion in vitro

Development ◽  
2002 ◽  
Vol 129 (20) ◽  
pp. 4697-4705
Author(s):  
Beatrix P. Rubin ◽  
Richard P. Tucker ◽  
Marianne Brown-Luedi ◽  
Doris Martin ◽  
Ruth Chiquet-Ehrismann

The transmembrane glycoprotein teneurin 2 is expressed by neurons in the developing avian thalamofugal visual system at periods that correspond with target recognition and synaptogenesis. Partial and full-length teneurin 2 constructs were expressed in cell lines in vitro. Expression of the cytoplasmic domain is required for the induction of filopodia, the transport of teneurin 2 into neurites and the co-localization of teneurin 2 with the cortical actin cytoskeleton. In addition, expression of the extracellular domain of teneurin 2 by HT1080 cells induced cell aggregation, and the extracellular domain of teneurin 2 became concentrated at sites of cell-cell contact in neuroblastoma cells. These observations indicate that the homophilic binding of teneurin 2 may play a role in the development of specific neuronal circuits in the developing visual system.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-wen Cheng ◽  
Li-xia Duan ◽  
Yang Yu ◽  
Pu Wang ◽  
Jia-le Feng ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) play a crucial role in cancer development and tumor resistance to therapy in prostate cancer, but the influence of MSCs on the stemness potential of PCa cells by cell–cell contact remains unclear. In this study, we investigated the effect of direct contact of PCa cells with MSCs on the stemness of PCa and its mechanisms. Methods First, the flow cytometry, colony formation, and sphere formation were performed to determine the stemness of PCaMSCs, and the expression of stemness-related molecules (Sox2, Oct4, and Nanog) was investigated by western blot analysis. Then, we used western blot and qPCR to determine the activity levels of two candidate pathways and their downstream stemness-associated pathway. Finally, we verified the role of the significantly changed pathway by assessing the key factors in this pathway via in vitro and in vivo experiments. Results We established that MSCs promoted the stemness of PCa cells by cell–cell contact. We here established that the enhanced stemness of PCaMSCs was independent of the CCL5/CCR5 pathway. We also found that PCaMSCs up-regulated the expression of Notch signaling-related genes, and inhibition of Jagged1-Notch1 signaling in PCaMSCs cells significantly inhibited MSCs-induced stemness and tumorigenesis in vitro and in vivo. Conclusions Our results reveal a novel interaction between MSCs and PCa cells in promoting tumorigenesis through activation of the Jagged1/Notch1 pathway, providing a new therapeutic target for the treatment of PCa.


2021 ◽  
Author(s):  
Mattias Malaguti ◽  
Rosa Portero Migueles ◽  
Jennifer Annoh ◽  
Daina Sadurska ◽  
Guillaume Blin ◽  
...  

ABSTRACTCell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here we introduce SyNPL: clonal pluripotent stem cell lines which employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered “sender” and “receiver” cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new tool which could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and which can be adapted to generate synthetic patterning of cell fate decisions.


1996 ◽  
Vol 132 (1) ◽  
pp. 181-193 ◽  
Author(s):  
S Yoshida ◽  
A Fujisawa-Sehara ◽  
T Taki ◽  
K Arai ◽  
Y Nabeshima

Myogenic cells provide excellent in vitro models for studying the cell growth and differentiation. In this study we report that lysophosphatidic acid (LPA), a bioactive phospholipid contained in serum, stimulates the growth and inhibits the differentiation of mouse C2C12 myoblast cells, in a distinct manner from basic fibroblast growth factor (bFGF) whose mitotic and anti-differentiation actions have been well investigated. These actions of LPA were both blocked by pertussis toxin, suggesting the involvement of Gi class of G proteins, whereas bFGF acts through receptor tyrosine kinases. Detailed analysis revealed that LPA and bFGF act differently in regulating the myogenic basic helix-loop-helix (bHLH) proteins, the key players in myogenic differentiation process. LPA stimulates the proliferation of undifferentiated myoblasts allowing the continued expression of MyoD, but in contrast, bFGF does so with the MyoD expression suppressed at the mRNA level. Both compounds maintain the myf-5 expression, and suppress the myogenin expression. In addition, while LPA did not inhibit cell-cell contact-induced differentiation, bFGF strongly inhibited this process. Furthermore, LPA and bFGF act cooperatively in their mitogenic and anti-differentiation abilities. These findings indicate that LPA and bFGF differently stimulate intracellular signaling pathways, resulting in proliferating myoblasts each bearing a distinct expression pattern of myogenic bHLH proteins and distinct differentiation potentials in response to cell-cell contact, and illustrate the biological significance of Gi-mediated and tyrosine kinase-mediated signals.


1995 ◽  
Vol 108 (12) ◽  
pp. 3839-3853 ◽  
Author(s):  
F. Monier-Gavelle ◽  
J.L. Duband

Dispersion of neural crest cells and their ultimate regroupment into peripheral ganglia are associated with precisely coordinated regulations both in time and space of the expression and function of cell adhesion receptors. In particular, the disappearance of N-cadherin from the cell surface at the onset of migration and its reexpression during cell aggregation suggest that, during migration, N-cadherin expression is repressed in neural crest cells. In the present study, we have analyzed in vitro the mechanism of control of N-cadherin expression and function in migrating neural crest cells. Although these cells moved as a dense population, each individual did not establish extensive and permanent intercellular contacts with its neighbors. However, cells synthesized and expressed mature N-cadherin molecules at levels comparable to those found in cells that exhibit stable intercellular contacts, but in contrast to them, the bulk of N-cadherin molecules was not connected with the cytoskeleton. We next determined which intracellular events are responsible for the instability of the N-cadherin junctions in neural crest cells using various chemical agents known to affect signal transduction processes. Agents that block a broad spectrum of serine-threonine kinases (6-dimethylaminopurine, H7 and staurosporine) or that affect selectively protein kinases C (bisindolylmaleimide and sphingosine), inhibitors of protein tyrosine kinases (erbstatin, herbimycin A, and tyrphostins), and inhibitors of phosphatases (vanadate) all restored tight cell-cell associations among neural crest cells, accompanied by a slight increase in the overall cellular content of N-cadherin and its accumulation to the regions of intercellular contacts. The effect of the kinase and phosphatase blockers was inhibitable by agents known to affect protein synthesis (cycloheximide) and exportation (brefeldin A), indicating that the restored cell-cell contacts were mediated chiefly by an intracellular pool of N-cadherin molecules recruited to the membrane. Finally, N-cadherin molecules were constitutively phosphorylated in migrating neural crest cells, but their level and state of phosphorylation were apparently not modified in the presence of kinase and phosphatase inhibitors. These observations therefore suggest that N-cadherin-mediated cell-cell interactions are not stable in neural crest cells migrating in vitro, and that they are under the control of a complex cascade of intracellular signals involving kinases and phosphatases and probably elicited by surface receptors.


1994 ◽  
Vol 160 (3) ◽  
pp. 445-454 ◽  
Author(s):  
Masanobu Nanno ◽  
Masahiro Hata ◽  
Hideki Yagi ◽  
Tsunetoshi Itoh ◽  
Hideyuki Doi ◽  
...  

1991 ◽  
Vol 112 (3) ◽  
pp. 479-490 ◽  
Author(s):  
M G Lampugnani ◽  
M Resnati ◽  
E Dejana ◽  
P C Marchisio

This paper shows that, in confluent human umbilical vein endothelial cell (EC) monolayers, the integrin heterodimers alpha 2 beta 1 and alpha 5 beta 1, but not other members of the beta 1 subfamily, are located at cell-cell contact borders and not at cellular free edges. Also the alpha v chain, but not its most common partner beta 3, that is widely expressed in EC cell-matrix junctions, is found at cell-cell borders. In EC monolayers, the putative ligands of alpha 2 beta 1 and alpha 5 beta 1 receptors, i.e., laminin, collagen type IV, and fibronectin, are also organized in strands corresponding to cell-cell borders. The location of the above integrin receptors is not an artifact of in vitro culture since it has been noted also in explanted islets of the native umbilical vein endothelium. The integrins alpha 2 beta 1 and alpha 5 beta 1 play a role in the maintenance of endothelial monolayer continuity in vitro. Indeed, specific antibodies to alpha 2 beta 1, alpha 5 beta 1, and the synthetic peptide GRGDSP alter its continuity without any initial cell detachment. Moreover, antibodies to alpha 5 beta 1 increase the permeation of macromolecules across confluent EC monolayers. In contrast beta 3 antibodies were ineffective. It is suggested that the relocation of integrins to cell-cell borders is a feature of cells programmed to form polarized monolayers since integrins have a different distribution in nonpolar confluent dermal fibroblasts. The conclusion is that some members of the integrin superfamily collaborate with other intercellular molecules to form lateral junctions and to control both the monolayer integrity and the permeability properties of the vascular endothelial lining. This also suggest that integrins are adhesion molecules provided with a unique biochemical adaptability to different biological functions.


2002 ◽  
Vol 157 (7) ◽  
pp. 1223-1232 ◽  
Author(s):  
Andrew W. Schaefer ◽  
Yoshimasa Kamei ◽  
Hiroyuki Kamiguchi ◽  
Eric V. Wong ◽  
Iris Rapoport ◽  
...  

Dynamic regulation of the cell surface expression of adhesion molecules is an important mechanism for controlling neuronal growth cone motility and guidance. Clathrin-mediated vesicular internalization of L1 via the tyrosine-based endocytosis motif YRSL regulates adhesion and signaling by this Ig superfamily molecule. Here, we present evidence that tyrosine-1176 (Y1176) of the YRSL motif is phosphorylated in vivo. The nonreceptor tyrosine kinase (p60src) is implicated in L1-mediated neurite outgrowth, and we find that p60src phosphorylates Y1176 in vitro. Phosphorylation of Y1176 prevents L1 binding to AP-2, an adaptor required for clathrin-mediated internalization of L1. mAb 74-5H7 recognizes the sequence immediately NH2-terminal to the tyrosine-based motif and binds L1 only when Y1176 is dephosphorylated. 74-5H7 identifies a subset of L1 present at points of cell–cell contact and in vesicle-like structures that colocalize with an endocytosis marker. L1–L1 binding or L1 cross-linking induces a rapid increase in 74-5H7 immunoreactivity. Our data suggest a model in which homophilic binding or L1 cross-linking triggers transient dephosphorylation of the YRSL motif that makes L1 available for endocytosis. Thus, the regulation of L1 endocytosis through dephosphorylation of Y1176 is a critical regulatory point of L1-mediated adhesion and signaling.


2007 ◽  
Vol 328 (2) ◽  
pp. 391-400 ◽  
Author(s):  
Shuang-yan Gao ◽  
Chun-yu Li ◽  
Tetsuya Shimokawa ◽  
Takehiro Terashita ◽  
Seiji Matsuda ◽  
...  

2000 ◽  
Vol 349 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Yutaka SHIMOYAMA ◽  
Gozoh TSUJIMOTO ◽  
Masaki KITAJIMA ◽  
Michiya NATORI

We identified three novel human type-II classic cadherins, cadherin-7, -9 and -10, by cDNA cloning and sequencing, and confirmed that they interact with catenins and function in cell-cell adhesion as do other classic cadherins. Cell-cell binding activities of the eight human type-II classic cadherins, including the three new molecules, were evaluated by long-term cell-aggregation experiments using mouse L fibroblast clones transfected with the individual cadherins. The experiments indicated that all the type-II cadherins appeared to possess similar binding strength, which was virtually equivalent to that of E-cadherin. We next examined the binding specificities of the type-II cadherins using the mixed cell-aggregation assay. Although all of the type-II cadherins exhibited binding specificities distinct from that of E-cadherin, heterophilic interactions ranging from incomplete to complete were frequently observed among them. The combinations of cadherin-6 and -9, cadherin-7 and -14, cadherin-8 and -11, and cadherin-9 and -10 interacted in a complete manner, and in particular cadherin-7 and -14, and cadherin-8 and -11 showed an indistinguishable binding specificity against other cadherin subclasses, at least in this assay system. Although these data were obtained from an in vitro study, they should be useful for understanding cadherin-mediated mechanisms of development, morphogenesis and cell-cell interactions in vivo.


1994 ◽  
Vol 72 (03) ◽  
pp. 450-456 ◽  
Author(s):  
Norma Maugeri ◽  
Virgilio Evangelista ◽  
Antonio Celardo ◽  
Giuseppe Dell’Elba ◽  
Nicola Martelli ◽  
...  

SummaryIn PMN/platelet suspensions stimulated by fMLP giant mixed aggregates are formed and TxB2 and LTC4 are synthesized as the result of the cooperation in the arachidonic acid (AA) metabolism during cell/cell contact. PMN-derived cathepsin G induced the expression of P-selectin on platelet surface. GE12, an antibody against P-selectin, significantly reduced mixed cell aggregates. GE12 did not affect platelet aggregation induced by PMN-derived supernatants, indicating that the inhibitory effect of GE12 on mixed cell aggregation depends on inhibition of PMN/platelet adhesion. GE12 significantly reduced TxB2 and LTC4 production in PMN/platelet mixed cell suspensions stimulated by fMLP. As previously reported, synthesis of 3H-TxB2 in 3H-AA-labeled PMN/unlabeled platelets indicates that platelets utilize 3H-AA from PMN. 3H-LTC4 production in unlabeled PMN/3H-AA-labeled platelets indicates that bidirectional routes are utilized in this system for LTC4 synthesis. GE12 significantly reduced 3H-TxB2 and 3H-LTC4 synthesis. These results show that cathepsin G released by activated PMN induces the expression of P-selectin on platelet membrane: this adhesive glycoprotein modulates cell-cell contact and transcellular metabolism of AA.


Sign in / Sign up

Export Citation Format

Share Document