Caenorhabditis elegansPlexinA, PLX-1, interacts with transmembrane semaphorins and regulates epidermal morphogenesis

Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2053-2063 ◽  
Author(s):  
Takashi Fujii ◽  
Fumi Nakao ◽  
Yukimasa Shibata ◽  
Go Shioi ◽  
Eiji Kodama ◽  
...  

The plexin family transmembrane proteins are putative receptors for semaphorins, which are implicated in the morphogenesis of animal embryos, including axonal guidance. We have generated and characterized putative null mutants of the C. elegans plexinA gene, plx-1. plx-1 mutants exhibited morphological defects: displacement of ray 1 and discontinuous alae. The epidermal precursors for the affected organs were aberrantly arranged in the mutants, and a plx-1::gfp transgene was expressed in these epidermal precursor cells as they underwent dynamic morphological changes. Suppression of C. elegans transmembrane semaphorins, Ce-Sema-1a and Ce-Sema-1b, by RNA interference caused a displacement of ray 1 similar to that of plx-1 mutants, whereas mutants for the Ce-Sema-2a/mab-20 gene, which encodes a secreted-type semaphorin, exhibited phenotypes distinct from those of plx-1 mutants. A heterologous expression system showed that Ce-Sema-1a, but not Ce-Sema-2a, physically bound to PLX-1. Our results indicate that PLX-1 functions as a receptor for transmembrane-type semaphorins, and, though Ce-Sema-2a and PLX-1 both play roles in the regulation of cellular morphology during epidermal morphogenesis, they function rather independently.

2020 ◽  
Vol 117 (40) ◽  
pp. 25128-25137
Author(s):  
Longgang Niu ◽  
Yan Li ◽  
Pengyu Zong ◽  
Ping Liu ◽  
Yuan Shui ◽  
...  

Melatonin (Mel) promotes sleep through G protein-coupled receptors. However, the downstream molecular target(s) is unknown. We identified the Caenorhabditis elegans BK channel SLO-1 as a molecular target of the Mel receptor PCDR-1-. Knockout of pcdr-1, slo-1, or homt-1 (a gene required for Mel synthesis) causes substantially increased neurotransmitter release and shortened sleep duration, and these effects are nonadditive in double knockouts. Exogenous Mel inhibits neurotransmitter release and promotes sleep in wild-type (WT) but not pcdr-1 and slo-1 mutants. In a heterologous expression system, Mel activates the human BK channel (hSlo1) in a membrane-delimited manner in the presence of the Mel receptor MT1 but not MT2. A peptide acting to release free Gβγ also activates hSlo1 in a MT1-dependent and membrane-delimited manner, whereas a Gβλ inhibitor abolishes the stimulating effect of Mel. Our results suggest that Mel promotes sleep by activating the BK channel through a specific Mel receptor and Gβλ.


Development ◽  
2000 ◽  
Vol 127 (4) ◽  
pp. 755-767 ◽  
Author(s):  
P.J. Roy ◽  
H. Zheng ◽  
C.E. Warren ◽  
J.G. Culotti

The Semaphorins are a family of secreted and transmembrane proteins known to elicit growth cone repulsion and collapse. We made and characterized a putative null mutant of the C. elegans gene semaphorin-2a (Ce-sema-2a). This mutant failed to complement mutants of mab-20 (Baird, S. E., Fitch, D. H., Kassem, I. A. A. and Emmons, S. W. (1991) Development 113, 515–526). In addition to low-frequency axon guidance errors, mab-20 mutants have unexpected defects in epidermal morphogenesis. Errant epidermal cell migrations affect epidermal enclosure of the embryo, body shape and sensory rays of the male tail. These phenotypic traits are explained by the formation of inappropriate contacts between cells of similar type and suggest that Ce-Sema-2a may normally prevent formation or stabilization of ectopic adhesive contacts between these cells.


2019 ◽  
Author(s):  
Long-Gang Niu ◽  
Ping Liu ◽  
Zhao-Wen Wang ◽  
Bojun Chen

AbstractSlo2 potassium channels play important roles in neuronal function, and their mutations in humans cause epilepsies and cognitive defects. However, little is known how Slo2 function is regulated by other proteins. Here we found that the function of C. elegans Slo2 (SLO-2) depends on adr-1, a gene important to RNA editing. However, slo-2 transcripts have no detectable RNA editing events and exhibit similar expression levels in wild type and adr-1 mutants. In contrast, mRNA level of scyl-1, which encodes an orthologue of mammalian SCYL1, is greatly reduced in adr-1 mutants due to deficient RNA editing at a single adenosine in its 3’-UTR. SCYL-1 physically interacts with SLO-2 in neurons. Single-channel open probability of SLO-2 in neurons is reduced by ∼50% in scyl-1 knockout whereas that of human Slo2.2/Slack is doubled by SCYL1 in a heterologous expression system. These results suggest that SCYL-1/SCYL1 is an evolutionarily conserved regulator of Slo2 channels.


2020 ◽  
Author(s):  
Jaap van Krugten ◽  
Noémie Danné ◽  
Erwin J.G. Peterman

AbstractSensing and reacting to the environment is essential for survival and procreation of most organisms. Caenorhabditis elegans senses soluble chemicals with transmembrane proteins (TPs) in the cilia of its chemosensory neurons. Development, maintenance and function of these cilia relies on intraflagellar transport (IFT), in which motor proteins transport cargo, including sensory TPs, back and forth along the ciliary axoneme. Here we use live fluorescence imaging to show that IFT machinery and the sensory TP OCR-2 reversibly redistribute along the cilium after exposure to repellant chemicals. To elucidate the underlying mechanisms, we performed single-molecule tracking experiments and found that OCR-2 distribution depends on an intricate interplay between IFT-driven transport, normal diffusion and subdiffusion that depends on the specific location in the cilium. These insights in the role of IFT on the dynamics of cellular signal transduction contribute to a deeper understanding of the regulation of sensory TPs and chemosensing.


2021 ◽  
Author(s):  
Sebiha Cevik ◽  
Lama Alabdi ◽  
Xiaoyu Peng ◽  
Tina Beyer ◽  
Atiyye Zorluer ◽  
...  

Abstract The term “ciliopathy” refers to a group of over 35 rare disorders characterized by defective cilia and many overlapping clinical features, such as hydrocephalus, cerebellar vermis hypoplasia, polydactyly, and retinopathy. Even though many genes have been implicated in ciliopathies, the genetic pathogenesis in certain cases remains still undisclosed. Here, we identified a homozygous truncating variant in WDR31 in a patient with a typical ciliopathy phenotype encompassing congenital hydrocephalus, polydactyly, and renal agenesis. WDR31 is an evolutionarily conserved protein that localizes to the cilium and cilia-related compartment. Analysis from zebrafish supports the role of WDR31 in regulating the cilia morphology. The CRISPR/Cas9 knock-in (p.Arg261del) C. elegans model of the patient variant (p.Arg268*) reproduced several cilia-related defects observed in wdr-31 null mutants. Mechanistic analysis from C. elegans revealed that WDR-31 functions redundantly with ELDM-1 (ELMOD protein) and RPI-2 (RP2) to regulate the IFT trafficking through controlling the cilia entry of the BBSome. This work revealed WDR31 as a new ciliopathy protein that regulates IFT and BBSome trafficking.


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Jennifer O'Bier ◽  
Jessica Cox ◽  
Matthew Doty ◽  
Caitlin Schwartz ◽  
J. David Rawn ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jakob H. Viel ◽  
Amanda Y. van Tilburg ◽  
Oscar P. Kuipers

The ribosomally synthesized and post-translationally modified peptide mersacidin is a class II lanthipeptide with good activity against Gram-positive bacteria. The intramolecular lanthionine rings, that give mersacidin its stability and antimicrobial activity, are specific structures with potential applications in synthetic biology. To add the mersacidin modification enzymes to the synthetic biology toolbox, a heterologous expression system for mersacidin in Escherichia coli has recently been developed. While this system was able to produce fully modified mersacidin precursor peptide that could be activated by Bacillus amyloliquefaciens supernatant and showed that mersacidin was activated in an additional proteolytic step after transportation out of the cell, it lacked a mechanism for clean and straightforward leader processing. Here, the protease responsible for activating mersacidin was identified and heterologously produced in E. coli, improving the previously reported heterologous expression system. By screening multiple proteases, the stringency of proteolytic activity directly next to a very small lanthionine ring is demonstrated, and the full two-step proteolytic activation of mersacidin was elucidated. Additionally, the effect of partial leader processing on diffusion and antimicrobial activity is assessed, shedding light on the function of two-step leader processing.


Sign in / Sign up

Export Citation Format

Share Document