scholarly journals Genetic evidence for Amh modulation of gonadotropin actions to control gonadal homeostasis and gametogenesis in zebrafish and its noncanonical signaling through Bmpr2a receptor

Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev189811
Author(s):  
Zhiwei Zhang ◽  
Kun Wu ◽  
Zhiqin Ren ◽  
Wei Ge

ABSTRACTAnti-Müllerian hormone (Amh) plays an important role in gonadal function. Amh deficiency causes severe gonadal dysgenesis and dysfunction in zebrafish, with gonadal hypertrophy in both sexes. However, its mechanism of action remains unknown. Intriguingly, the Amh cognate type II receptor (Amhr2) is missing in the zebrafish genome, in sharp contrast to other species. Using a series of zebrafish mutants (amh, fshb, fshr and lhcgr), we provided unequivocal evidence for actions of Amh, via modulation of gonadotropin signaling, on both germ cell proliferation and differentiation. The gonadal hypertrophy in amh mutants was abolished in the absence of Fshr in females or Fshr/Lhcgr in males. Furthermore, we demonstrated that knockout of bmpr2a, but not bmpr2b, phenocopied all phenotypes of the amh mutant in both sexes, including gonadal hypertrophy, hyperproliferation of germ cells, retarded gametogenesis and reduced fshb expression. In summary, the present study provided comprehensive genetic evidence for an intimate interaction of gonadotropin and Amh pathways in gonadal homeostasis and gametogenesis and for Bmpr2a as the possible missing link for Amh signaling in zebrafish.

Development ◽  
1990 ◽  
Vol 108 (Supplement) ◽  
pp. 89-98 ◽  
Author(s):  
M. Azim Surani ◽  
Rashmi Kothary ◽  
Nicholas D. Allen ◽  
Prim B. Singh ◽  
Reinald Fundele ◽  
...  

Development in mammals is influenced by genome imprinting which results in differences in the expression of some homologous maternal and paternal alleles. This process, initiated in the germline, can continue following fertilization with interactions between oocyte cytoplasmic factors and the parental genomes involving modifier genes. Further epigenetic modifications may follow to render the ‘imprints’ heritable through subsequent cell divisions during development. Imprinting of genes can be critical for their dosage affecting embryonic growth, cell proliferation and differentiation. The cumulative effects of all the imprinted genes are observed in androgenones (AC) and parthenogenones (PG), which reveal complementary phenotypes with respect to embryonic and extraembryonic tissues. The presence of PG cells in chimeras causes growth retardation, while that of AG cells enhanced growth. AG cells apparently have a higher cell proliferation rate and, unlike PG cells, are less prone to selective elimination. However, the PG germ cells are exempt from cell selection. In chimeras, PG cells are more likely to be found in ectodermal derivatives such as epidermis and brain in contrast to AG cells which make pronounced contributions to many mesodermal derivatives such as muscle, kidney, dermis and skeleton. The presence of androgenetic cells in chimeras also results in the disproportionate elongation of the anterior–posterior axis and sometimes in the abnormal development of skeletal elements along the axis. Genetic studies highlight the influence of subsets of imprinted genes, and identify those that are critical for development.


2020 ◽  
Vol 22 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Lin-Jun Sun ◽  
Chong Li ◽  
Xiang-hao Wen ◽  
Lu Guo ◽  
Zi-Fen Guo ◽  
...  

Background:: Icariin (ICA), one of the main effective components isolated from the traditional Chinese herb Epimedium brevicornu Maxim., has been reported to possess extensive pharmacological actions, including enhanced sexual function, immune regulation, anti-inflammation, and antiosteoporosis. Methods:: Our study was designed to investigate the effect of ICA on cell proliferation and differentiation and the molecular mechanism of OPG/RANKL mediated by the Estrogen Receptor (ER) in hFOB1.19 human osteoblast cells. Results:: The experimental results show that ICA can stimulate cell proliferation and increase the activity of Alkaline Phosphatase (ALP), Osteocalcin (BGP) and I Collagen (Col I) and a number of calcified nodules. Furthermore, the mRNA and protein expression of OPG and RANKL and the OPG/ RANKL mRNA and protein expression ratios were upregulated by ICA. The above-mentioned results indicated that the optimal concentration of ICA for stimulating osteogenesis was 50ng/mL. Subsequent mechanistic studies comparing 50ng/mL ICA with an estrogen receptor antagonist demonstrated that the effect of the upregulated expression is connected with the estrogen receptor. In conclusion, ICA can regulate bone formation by promoting cell proliferation and differentiation and upregulating the OPG/RANKL expression ratio by the ER in hFOB1.19 human osteoblast cells.


1997 ◽  
Vol 186 (10) ◽  
pp. 1787-1791 ◽  
Author(s):  
Pan Zheng ◽  
Yang Liu

It has been proposed that some bystander T cell activation may in fact be due to T cell antigen receptor (TCR) cross-reactivity that is too low to be detected by the effector cytotoxic T lymphocyte (CTL). However, this hypothesis is not supported by direct evidence since no TCR ligand is known to induce T cell proliferation and differentiation without being recognized by the effector CTL. Here we report that transgenic T cells expressing a T cell receptor to influenza virus A/NT/68 nucleoprotein (NP) 366-374:Db complexes clonally expand and become effector CTLs in response to homologous peptides from either A/PR8/34 (H1N1), A/AA/60 (H2N2), or A/NT/68 (H3N2). However, the effector T cells induced by each of the three peptides kill target cells pulsed with NP peptides from the H3N2 and H2N2 viruses, but not from the H1N1 virus. Thus, NP366–374 from influenza virus H1N1 is the first TCR ligand that can induce T cell proliferation and differentiation without being recognized by CTLs. Since induction of T cell proliferation was mediated by antigen-presenting cells that express costimulatory molecules such as B7, we investigated if cytolysis of H1N1 NP peptide–pulsed targets can be restored by expressing B7-1 on the target cells. Our results revealed that this is the case. These data demonstrated that costimulatory molecule B7 modulates antigen specificity of CTLs, and provides a missing link that explains some of the bystander T cell activation.


Sign in / Sign up

Export Citation Format

Share Document