A radioautographic analysis of the migration and fate of cells derived from the occipital somites in the chick embryo with specific reference to the development of the hypoglossal musculature

Development ◽  
1970 ◽  
Vol 24 (3) ◽  
pp. 455-466
Author(s):  
R. D. Hazelton

The migration pattern and fate of cells of the occipital somites and overlying ectoderm have been described for the chick embryo with particular reference to the development of the hypoglossal musculature. Tritium-labelled thymidine (0·5–10 µCi per egg) was used as a cell-specific marker. Occipital somites (2–5) with overlying ectoderm were transplanted orthotopically from labelled donor embryos to unlabelled host embryos (Hamburger & Hamilton, stage 9–10). The embryos were incubated, for varying lengths of time (24 h-5 days), sacrificed, sectioned and the migration pattern and fate of the labelled cells determined radioautographically. It appears that the hypoglossal as well as other hypopharyngeal musculature originates from the occipital somites. The mesodermal migration pattern extended from the occipital somite region in a ventroposterior direction to the dorsal surface of the pericardial cavity posterior to the expanded portion of the pharynx. At this position a so-called hypoglossal cord formed on each side which ran anteriorly to the level of the second pharyngeal pouch where it turned medially and together with the cord from the other side entered the pharyngeal area of the embryo. This material apparently forms the intrinsic musculature of the tongue. The mesodermal movements are attributed to differential growth movements of the areas concerned as well as to active cell mutiplication and migration. Selective embryonic neuronal staining was undertaken to study the relationship between the migrating hypoglossal cord and nerve. The cord preceded the nerve in its migration. There is an occipital somitic contribution to the primitive meninx, to the endothelial walls of developing blood vessels, possibly to microglial cells and to the cartilage surrounding the notocord. The occipital ectoderm expands dorso-anteriorly and ventro-laterally. In the ventro-lateral position as contact is made with the pharyngeal endoderm a placode is formed which contributes cells to the nodose ganglion of the tenth cranial nerve. There is no other contribution of the ectoderm to the underlying tissues.

Development ◽  
1993 ◽  
Vol 118 (2) ◽  
pp. 389-399 ◽  
Author(s):  
E.J. Sanders ◽  
M. Varedi ◽  
A.S. French

Cell proliferation in the gastrulating chick embryo was assessed using two independent techniques which mark cells in S phase of the mitotic cycle: nuclear incorporation of bromodeoxyuridine (BrdU) detected immunocytochemically and immunolocalization of proliferating cell nuclear antigen (PCNA). Computer-reconstructed maps were produced showing the distribution of labelled nuclei in the primitive streak and the cell layers. These distributions were also normalized to take into account regional differences in cell density across the embryo. Results from a 2 hour pulse of BrdU indicated that although cells at caudal levels of the primitive streak showed the highest incorporation, this region showed a similar proportion of labelled cells to the surrounding caudal regions of the epiblast and mesoderm when normalized for cell density. The entire caudal third of the embryo showed the highest proportion of cells in S phase. Cells of Hensen's node showed a relatively low rate of incorporation and, although the chordamesoderm cells showed many labelled nuclei, this appeared to be a reflection of a high cell density in this region. Combining this result with results from a 4 hour pulse of BrdU permitted mapping of cell generation time across the entire embryo. Generation times ranged from a low value of approximately 2 hours at caudal levels of both the epiblast and mesoderm, to an upper value of approximately 10 hours in the rostral regions of the primitive streak, in the mid-lateral levels of the epiblast and in the chordamesoderm rostral to Hensen's node. Cells at caudal regions of the primitive streak showed a generation time of approximately 5 hours. Taking into account that cells are generally considered to be continuously moving through the primitive streak, we conclude that cell division, as judged by generation time, is greatly reduced during transit through this region, despite the presence there of cells in S phase and M phase. Immunocytochemical localization of PCNA-positive nuclei gave generally similar distributions to those obtained with BrdU incorporation, confirming that this endogenous molecule is a useful S-phase marker during early embryogenesis. Mid-levels and caudal levels of the primitive streak showed the highest numbers of positive nuclei, and the highest proportion of labelling after cell density was accounted for. As with BrdU incorporation, the highest proportions of PCNA-positive nuclei were found towards the caudal regions of the epiblast and mesoderm. These results suggest that the differential growth of the caudal region of the embryo at this time is a direct consequence of elevated levels of cell proliferation in this region.(ABSTRACT TRUNCATED AT 400 WORDS)


Development ◽  
1968 ◽  
Vol 19 (2) ◽  
pp. 217-226
Author(s):  
Jan Langman ◽  
George R. Nelson

Considerable difference of opinion exists about the origin of the various components of the somite. According to Williams (1910), Hamilton (1952) and Boyd (1960), the cells of the myotome originate in the dorso-medial angle of the somite wall and migrate beneath the dermatome in ventro-lateral direction. A group of older investigators (Remak, 1855; His, 1888; Bardeen, 1900) state, however, that the myotome cells originate not only in the dorso-medial angle but also along the total length of the dorsal somite wall, formed by the dermatome. Similarly, in birds whether the myotome extends in ventro-lateral direction by growth and migration of existing cells (Engert, 1900; Williams, 1910) or by differentiation of locally found mesoderm cells into myoblasts (Straus & Rawles, 1953) remains even at present a controversial issue.


Author(s):  
Milena Tucić ◽  
Vera Stamenković ◽  
Pavle Andjus

Tenascin C (TnC) is a glycoprotein highly expressed in the extracellular matrix (ECM) during development and in the adult central nervous system (CNS) in regions of active neurogenesis, where neuron development is a tightly regulated process orchestrated by extracellular matrix components. In addition, newborn cells also communicate with glial cells, astrocytes and microglia, indicating the importance of signal integration in adult neurogenesis. Although TnC has been recognized as an important molecule in the regulation of cell proliferation and migration, complete regulatory pathways still need to be elucidated. In this review we discuss the formation of new neurons in the adult hippocampus and the olfactory system with specific reference to TnC and its regulating functions in this process. Better understanding of the ECM signaling in the niche of the CNS will have significant implications for regenerative therapies.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1281-1291 ◽  
Author(s):  
A. Lumsden ◽  
N. Sprawson ◽  
A. Graham

A vital dye analysis of cranial neural crest migration in the chick embryo has provided a positional fate map of greater resolution than has been possible using labelled graft techniques. Focal injections of the fluorescent membrane probe DiI were made into the cranial neural folds at stages between 3 and 16 somites. Groups of neuroepithelial cells, including the premigratory neural crest, were labelled by the vital dye. Analysis of whole-mount embryos after 1–2 days further development, using conventional and intensified video fluorescence microscopy, revealed the pathways of crest cells migrating from mesencephalic and rhombencephalic levels of the neuraxis into the subjacent branchial region. The patterns of crest emergence and emigration correlate with the segmented disposition of the rhombencephalon. Branchial arches 1, 2 and 3 are filled by crest cells migrating from rhombomeres 2, 4 and 6 respectively, in register with the cranial nerve entry/exit points in these segments. The three streams of ventrally migrating cells are separated by alternating regions, rhombomeres 3 and 5, which release no crest cells. Rostrally, rhombomere 1 and the caudal mesencephalon also contribute crest to the first arch, primarily to its upper (maxillary) component. Both r3 and r5 are associated with enhanced levels of cell death amongst cells of the dorsal midline, suggesting that crest may form at these levels but is then eliminated. Organisation of the branchial region is thus related by the dynamic process of neural crest immigration to the intrinsic mechanisms that segment the neuraxis.


2002 ◽  
Vol 13 (12) ◽  
pp. 4470-4483 ◽  
Author(s):  
Robert J. Eddy ◽  
Lynda M. Pierini ◽  
Frederick R. Maxfield

The development of cell polarity in response to chemoattractant stimulation in human polymorphonuclear neutrophils (PMNs) is characterized by the rapid conversion from round to polarized morphology with a leading lamellipod at the front and a uropod at the rear. During PMN polarization, the microtubule (MT) array undergoes a dramatic reorientation toward the uropod that is maintained during motility and does not require large-scale MT disassembly or cell adhesion to the substratum. MTs are excluded from the leading lamella during polarization and motility, but treatment with a myosin light chain kinase inhibitor (ML-7) or the actin-disrupting drug cytochalasin D causes an expansion of the MT array and penetration of MTs into the lamellipod. Depolymerization of the MT array before stimulation caused 10% of the cells to lose their polarity by extending two opposing lateral lamellipodia. These multipolar cells showed altered localization of a leading lamella-specific marker, talin, and a uropod-specific marker, CD44. In summary, these results indicate that F-actin– and myosin II-dependent forces lead to the development and maintenance of MT asymmetry that may act to reinforce cell polarity during PMN migration.


Pólemos ◽  
2021 ◽  
Vol 15 (2) ◽  
pp. 207-220
Author(s):  
Nicoletta Vallorani

Abstract My work here focuses on translation and migration, with specific reference to the field of visual arts, exploiting the kind of approach suggested by Loredana Polezzi – and mostly applied to linguistic translation – in her “Translation and Migration”. My contention is that, though apparently mimetic and universally understandable, images are culture-bound and they need being translated when crossing a border. The process of translation becomes more and more complex when the represented object/events/person is framed within a much-debated and politically overloaded issue. Focusing on a definite time (today) and a specific space (the Mediterranean Sea), I select some artistic projects by both Western and non-Western artists, pursuing a twofold objective. I want to show how the selected works raise the issue of responsibility and I want to reflect on the “language” they use to “translate” an untranslatable experience into an understandable message.


2022 ◽  
Vol 208 ◽  
pp. 109505
Author(s):  
Kabir Shola Ahmed ◽  
Keyu Liu ◽  
Harouna Moussa ◽  
Jiangliang Liu ◽  
Hafizullah Abba Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document