Development of Haemoglobin by De-embryonated Chick Blastoderms Cultured in vitro and the Effect of Abnormal RNA upon its Synthesis

Development ◽  
1961 ◽  
Vol 9 (1) ◽  
pp. 202-221
Author(s):  
B. R. A. O'Brien

The embryo provides a sequence of developmental stages in which proteins both structural and enzymatic appear or become detectable for the first time in a restricted group of dividing cells. The cells or tissues can be maintained in vitro for a period that may precede and include the synthesis of a specific ‘cytoplasmic’ protein. In this way systems of protein synthesis within the cells of higher organisms can be studied during those stages in which current hypotheses suggest that some structural code is passed on from the DNA of the nucleus to the cytoplasm where the synthesis of the protein becomes maximal. Acellular preparations have contributed much to the elucidation of protein synthesis, but it is doubtful whether actual net synthesis has been obtained in systems less complex than the ‘protoplast’ developed by Spiegelman (1957). In order to study the synthesis of a specific protein it seems necessary at this stage to use whole cells.

1972 ◽  
Vol 55 (3) ◽  
pp. 653-680 ◽  
Author(s):  
M. Paul ◽  
M. R. Goldsmith ◽  
J. R. Hunsley ◽  
F. C. Kafatos

Silkmoth follicles, arranged in a precise developmental sequence within the ovariole, yield pure and uniform populations of follicular epithelial cells highly differentiated for synthesis of the proteinaceous eggshell (chorion). These cells can be maintained and labeled efficiently in organ culture; their in vitro (and cell free) protein synthetic activity reflects their activity in vivo. During differentiation the cells undergo dramatic changes in protein synthesis. For 2 days the cells are devoted almost exclusively to production of distinctive chorion proteins of low molecular weight and of unusual amino acid composition. Each protein has its own characteristic developmental kinetics of synthesis. Each is synthesized as a separate polypeptide, apparently on monocistronic messenger RNA (mRNA), and thus reflects the expression of a distinct gene. The rapid changes in this tissue do not result from corresponding changes in translational efficiency. Thus, the peptide chain elongation rate is comparable for chorion and for proteins synthesized at earlier developmental stages (1.3–1.9 amino acids/sec); moreover, the spacing of ribosomes on chorion mRNA (30–37 codons per ribosome) is similar to that encountered in other eukaryotic systems.


1977 ◽  
Vol 166 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Carlo M. Veneziale ◽  
John M. Burns ◽  
Jon C. Lewis ◽  
Kaspar A. Büchi

Four intrinsic soluble secretory proteins are synthesized in vitro by isolated seminal-vesicle mucosa from sexually mature guinea pigs. Newly synthesized specific proteins labelled with [14C]glycine and [14C]lysine were precipitated by using double-antibody immunoprecipitation techniques and their radioactivity was assessed. Rates of synthesis were determined on each of 5 days after castration. By 5 days after castration the wet weight of the epithelium decreased to 42% of intact control values; the absolute amount of specific protein synthesized in vitro after 60min incubation decreased to 28% and the 27500g cytoplasmic protein content decreased to 31%. Thus androgen deprivation leads to a decrease in general protein synthesis in vivo, as well as to a decrease in specific protein synthesis in vitro. Specific protein synthesis comprised 76% of the total protein formed in isolated tissue from animals 5 days after castration as compared with 99–100% in tissue from intact animals. At 72h after an injection of testosterone or dihydrotestosterone, seminal-vesicle epithelium wet weight, cytoplasmic protein content and capability for synthesizing specific proteins in vitro were restored to approx. 70% of normal values. At 72h after onset of therapy with 3α-androstanediol, both epithelium wet weight and cytoplasmic protein content had increased significantly, but without a corresponding increase in the capability of the isolated tissue to synthesize specific proteins. The soluble labelled proteins synthesized in vitro by isolated epithelium from intact animals during 60 or 120min incubation were essentially entirely immunoprecipitable, i.e. specific. In contrast, approx. 29% of all soluble protein newly synthesized by isolated epithelium from animals 5 days after castration was acid-precipitable, but not immunoprecipitable, i.e. ‘non-specific’. The injection of testosterone into castrated animals inhibited the synthesis of the non-specific fraction by isolated tissue. The effects of castration on the ultrastructure of guinea-pig seminal-vesicle epithelium are also presented.


Development ◽  
1964 ◽  
Vol 12 (4) ◽  
pp. 609-619
Author(s):  
Anna Hell

Enormous progress has been made in the last few years towards the elucidation of the mechanism of protein synthesis, and great interest is centred on the steps leading to cellular differentiation and specific protein synthesis. We know that genetic information is passed on from one generation of cells to the next by deoxyribonucleic acid (DNA), and that this material directs all protein synthesis by the intermediary of the different types of ribonucleic acid (RNA). A simple in vitro system described by O'Brien (1959) seemed to offer an excellent tool for the study of the differentiation of the blood islands, and the initial formation of a well-known protein, haemoglobin (Hb), in chick embryonic tissues. After de-embryonation, chick blastoderms, from the stage of primitive streak onwards, can be cultured in vitro on a saline agar medium supplemented with glucose.


1983 ◽  
Vol 96 (3) ◽  
pp. 407-416 ◽  
Author(s):  
R. Jones ◽  
P. R. Riding ◽  
M. G. Parker

The relative importance of testosterone and prolactin in regulating growth and protein synthesis in rat accessory sex glands has been investigated. Protein synthesis was measured by incubating tissue minces in vitro with [35S]methionine and analysing labelled proteins on polyacrylamide gels containing sodium dodecyl sulphate. Plasma prolactin was assayed by radioimmunoassay. Results showed that castration for 8 days significantly reduced wet weights and total protein synthesis in the ventral prostate, dorsolateral prostate and caput epididymidis, but that these effects could be reversed by exogenous testosterone. Similarly, the specific incorporation of [35S]methionine into four polypeptides in the ventral prostate, two polypeptides in the dorsolateral prostate and two polypeptides in the caput epididymidis was lowered by castration but markedly stimulated by testosterone. Acute or chronic administration of 2-bromo-α-ergocryptine to animals in combination with testosterone had no significant effect on any of the parameters measured, although the drug reduced circulating prolactin to undetectable levels. In addition, exogenous prolactin given alone, or in combination with testosterone, to hypophysectomized rats had no effect on general or specific protein synthesis. The induction of hyperprolactinaemia in immature or mature rats with pituitary homographs had no effect on testosterone-stimulated growth of any accessory gland, although it caused a significant stimulation of total protein synthesis in the dorsolateral prostate and coagulating glands. However, this was a generalized effect as it did not increase the specific incorporation of [35S]methionine into androgen-dependent proteins. The results do not indicate a major role for prolactin in regulating androgen responsiveness of male accessory sex glands in the rat.


2020 ◽  
Vol 21 (24) ◽  
pp. 9410
Author(s):  
Bruno Casciaro ◽  
Maria Rosa Loffredo ◽  
Floriana Cappiello ◽  
Guendalina Fabiano ◽  
Luisa Torrini ◽  
...  

Bacterial biofilms are a serious threat for human health, and the Gram-positive bacterium Staphylococcus aureus is one of the microorganisms that can easily switch from a planktonic to a sessile lifestyle, providing protection from a large variety of adverse environmental conditions. Dormant non-dividing cells with low metabolic activity, named persisters, are tolerant to antibiotic treatment and are the principal cause of recalcitrant and resistant infections, including skin infections. Antimicrobial peptides (AMPs) hold promise as new anti-infective agents to treat such infections. Here for the first time, we investigated the activity of the frog-skin AMP temporin G (TG) against preformed S. aureus biofilm including persisters, as well as its efficacy in combination with tobramycin, in inhibiting S. aureus growth. TG was found to provoke ~50 to 100% reduction of biofilm viability in the concentration range from 12.5 to 100 µM vs ATCC and clinical isolates and to be active against persister cells (about 70–80% killing at 50–100 µM). Notably, sub-inhibitory concentrations of TG in combination with tobramycin were able to significantly reduce S. aureus growth, potentiating the antibiotic power. No critical cytotoxicity was detected when TG was tested in vitro up to 100 µM against human keratinocytes, confirming its safety profile for the development of a new potential anti-infective drug, especially for treatment of bacterial skin infections.


1985 ◽  
Vol 63 (3) ◽  
pp. 257-264 ◽  
Author(s):  
Bruce D. Murphy ◽  
Kadaba Rajkumar

This review summarizes evidence suggesting a direct luteotrophic role for the hypophyseal hormone prolactin (PRL). This direct role consists of the capability to stimulate progesterone synthesis in vitro, the capability to maintain the membrane fluidity and receptors for luteinizing hormone and the capability to import substrate for progesterone synthesis. The time required for PRL-induced luteotrophic events is in the order of hours and sometimes days, and it appears that the effects are not associated with acute intracellular changes. The relatively slow responses and the stimulation of specific protein synthesis by PRL in target tissues other than the ovary suggest that PRL may function primarily through activation of the genome. PRL may induce the synthesis of specific luteal proteins, including enzymes for the regulation of intracellular substrate pools, membrane receptors for LH, or receptor proteins for lipoproteins, a major extracellular source of substrate.


1976 ◽  
Vol 81 (2) ◽  
pp. 435-448 ◽  
Author(s):  
Michael J. Wilson ◽  
Eugene Spaziani

ABSTRACT Pigmentation of the scrotum of the black-pelted rat, as expressed through melanocyte melanogenic activity, is controlled by androgens. Castration decreased in vitro incorporation of [14C] tyrosine into melanin. Testosterone pre-treatment for 4 days increased melanin radioactivity over castrate controls; the increment in vitro was prevented by an inhibitor of protein synthesis (cycloheximide) added to the incubation. However, cycloheximide only partially blocked melanin synthesis when added to tissue from animals hormone treated for 6 days in vivo, and was ineffective in tissue from intacts. Bulk protein synthesis in vitro (incorporation of [14C] tyrosine or -leucine) was not affected by castration or testosterone treatment but was uniformly inhibited by cycloheximide. The data suggest that new synthesis of specific protein in vitro was necessary for initial hormone-stimulation of melanogenesis, but with longer exposure to hormone sufficient protein was pre-synthetized in vivo to permit melanogenesis during incubation with the inhibitor. Radioautographs of epidermis incubated with [14C] tyrosine showed grains concentrated over macromolecular aggregates in melanocytes, a pattern not altered by cycloheximide. Though available for incorporation into general tissue protein. [14C] tyrosine was apparently incorporated preferentially into melanin by melanocytes. DOPA (3,4-dihydroxyphenylalanine) added to incubations in cofactor amounts did not affect decreased melanin synthesis after castration and appears, therefore, not to be rate limiting in that decrease. Tissue uptake of free [14C] tyrosine or — leucine during incubation was lower than normal in castrate epidermis; uptake was elevated by testosterone treatment. Concentrations appeared sufficient in all preparations to suggest that availability is not rate limiting for synthesis of melanin or protein; however, a possible influence on amino acid permeability for melanocytes remains undetermined. Tyrosinase activity was present in both particulate and cytosol fractions of epidermis but decreased significantly after castration only in the cytosol. Testosterone increased particulate activity after 4 days and soluble activity after 9 days of treatment. These and findings above are consistent with a model that tyrosinase is synthesized and incorporated into melanosome structure within 4 days testosterone treatment; with longer treatment synthesis may then exceed that required for melanosome assembly and tyrosinase appears in the soluble milieu.


Sign in / Sign up

Export Citation Format

Share Document