scholarly journals Growth Inhibition of Polyoma-Transformed Cells by Contact with Static Normal Fibroblasts

1966 ◽  
Vol 1 (3) ◽  
pp. 297-310
Author(s):  
M. G. P. STOKER ◽  
MOIRA SHEARER ◽  
C. O'NEILL

The growth of polyoma-transformed BHK21 cells was studied in mixed cultures with normal mouse fibroblasts. On coverslips in excess medium, normal fibroblasts undergo one or two divisions after the cells become contiguous. Py-cell growth was not inhibited by contact with confluent fibroblasts which were still dividing, but the Py cells were rapidly inhibited after contact with fibroblasts which had become static. Further experiments confirmed the earlier view that the inhibitory effect was not due to a general change in the medium but was only brought about when cells were in contact or close proximity.

1967 ◽  
Vol 2 (3) ◽  
pp. 293-304
Author(s):  
M. G. P. STOKER

[3H]Thymidine and [3H]hypoxanthine incorporation were investigated by autoradiography in mixed cultures of polyoma-transformed BHK21 cells and freshly isolated mouse fibroblasts, with ingested carbon or carmine granules as markers to distinguish the cells. An assessment of the marking technique showed that there was some exchange of granules in the mixed cultures which prevented certain identification of individual cells, but suitable criteria were chosen for distinguishing the cells on a statistical basis. Thymidine incorporation was inhibited in one third to two thirds of the transformed cells when they were in contact with stationary layers of normal cells, which themselves showed a low proportion with thymidine incorporation. Transformed cells in the same dish which were not touching the normal cells showed no inhibition of thymidine incorporation. This is in agreement with the earlier observation that growth of transformed BHK21 cells is inhibited by contact with stationary normal fibroblasts. Experiments were also carried out on hypoxanthine incorporation with the TG1 variant of polyoma-transformed cells. TG1 cells are deficient in inosinic pyrophosphorylase and autoradiography shows a failure to incorporate hypoxanthine. When TG1 cells were cultured in contact with normal mouse embryo cells, however, it was found that hypoxanthine was present in the TG1 cells as well as in the normal cells. Increased incorporation did not occur in TG1 cells in the same dish which were not in contact with normal cells. This confirms earlier observations and shows that certain substances can pass directly from normal to transformed cells. It suggests the possibility that molecules concerned in growth regulation might also be transferred directly between contiguous cells.


2001 ◽  
Vol 67 (8) ◽  
pp. 3650-3654 ◽  
Author(s):  
Chan B. Park ◽  
Sun Bok Lee ◽  
Dewey D. Y. Ryu

ABSTRACT Identification of physiological and environmental factors that limit efficient growth of hyperthermophiles is important for practical application of these organisms to the production of useful enzymes or metabolites. During fed-batch cultivation of Sulfolobus solfataricus in medium containing l-glutamate, we observed formation of l-pyroglutamic acid (PGA). PGA formed spontaneously from l-glutamate under culture conditions (78°C and pH 3.0), and the PGA formation rate was much higher at an acidic or alkaline pH than at neutral pH. It was also found that PGA is a potent inhibitor of S. solfataricus growth. The cell growth rate was reduced by one-half by the presence of 5.1 mM PGA, and no growth was observed in the presence of 15.5 mM PGA. On the other hand, the inhibitory effect of PGA on cell growth was alleviated by addition of l-glutamate or l-aspartate to the medium. PGA was also produced from the l-glutamate in yeast extract; the PGA content increased to 8.5% (wt/wt) after 80 h of incubation of a yeast extract solution at 78°C and pH 3.0. In medium supplemented with yeast extract, cell growth was optimal in the presence of 3.0 g of yeast extract per liter, and higher yeast extract concentrations resulted in reduced cell yields. The extents of cell growth inhibition at yeast extract concentrations above the optimal concentration were correlated with the PGA concentration in the culture broth. Although other structural analogues ofl-glutamate, such as l-methionine sulfoxide, glutaric acid, succinic acid, and l-glutamic acid γ-methyl ester, also inhibited the growth of S. solfataricus, the greatest cell growth inhibition was observed with PGA. We also observed that unlike other glutamate analogues,N-acetyl-l-glutamate enhanced the growth of S. solfataricus. This compound was stable under cell culture conditions, and replacement of l-glutamate with N-acetyl-l-glutamate in the medium resulted in increased cell density.


2003 ◽  
Vol 179 (1) ◽  
pp. 55-62 ◽  
Author(s):  
M Alkhalaf ◽  
AM El-Mowafy

We have recently shown that growth inhibition of breast cancer cells by progesterone is due to the induction of cell differentiation, but not apoptosis. Because the tumor suppressor protein p53 plays a central role in normal cell growth and in tumor suppression, we have examined the effect of progesterone on the levels of this protein in MCF-7 cells. We show here that the antiproliferative effect of progesterone is accompanied with down-regulation of endogenous p53 protein. To study the effect of progesterone on cell growth in the presence of normal levels of p53 protein, we used transient transfection to overexpress p53 protein. MCF-7 cells were transfected with a p53 expressing vector that contains p53 human cDNA under the control of a cytomegalovirus promoter. Cell growth, cell viability, and apoptosis were analyzed in the transfected cells after six days of exposure to 100 nM progesterone. We show here that progesterone significantly enhances growth inhibition and apoptosis in MCF-7 cells overexpressing p53, but not in cells transfected with the control vector. These data suggest that re-establishing p53 function in MCF-7 breast cancer cells renders them more sensitive to the growth inhibitory effect of progesterone.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2351-2351
Author(s):  
Teru Hideshima ◽  
Pierfrancesco Tassone ◽  
Dharminder Chauhan ◽  
Kenji Ishitsuka ◽  
Constantine Mitsiades ◽  
...  

Abstract NF-κB is a transcriptional factor promoting tumor cell growth and inhibition of apoptosis via regulating expression of proteins modulating cell cycle and anti-apoptosis. NF-κB is constitutively associated with an inhibitor (IκB), which is phosphorylated by IκB kinase (IKK) upon cell stimulation (ie, TNFα) and subsequently degraded by ubiquitin-proteasome pathway, thereby allowing NF-κB to translocate to nucleus. We have previously shown that an IKK inhibitor PS-1145 partially (20–50%) inhibits MM cell proliferation; however, it inhibits both IL-6 secretion from BMSCs triggered by MM cell adhesion and proliferation of MM cells adherent to BMSCs. Targeting IKKβ is therefore a possible therapeutic option for inhibition of MM cell growth in the bone marrow microenvironment by downregulating NF-κB activity. In this study, we further delineated the biologic significance of IKK inhibition in MM cells using IKKβ specific inhibitor MLN120B (Millennium Pharmaceuticals, Cambridge, MA). MLN120B induced 60–90% growth inhibition in cells from the MM cell lines RPMI8226, RPMI/Dox40, RPMI/LR5, U266, and INA-6; on the other hand, it induced only 25–30% inhibition in MM.1S and MM.1R cells, assessed by 72 h tritiated-thymidine uptake. Importantly, neither IL-6 nor IGF-1 overcomes the growth inhibitory effect of MLN120B in both MM.1S and U266 cells. Interestingly, MLN120B significantly augmented TNFα-induced cytotoxicity in MM.1S cells. We next examined whether MLN120B could enhance the cytotoxicity of other agents. MLN120B augmented growth inhibition triggered by doxorubicin and melphalan in RPMI8226 and IL-6 dependent INA-6 cell line. We therefore studied growth inhibitory effect of MLN120B in the presence of bone marrow stromal cells (BMSCs). MLN120B inhibited 70–80% of constitutive IL-6 secretion from BMSCs, without toxicity. Importantly, MLN120B almost completely blocked stimulation of MM.1S, U266 and INA-4 cell growth and IL-6 secretion from BMSCs induced by binding of tumor cells to BMSCs. Finally, MLN120B overcame the protective effect of BMSCs, cell adhesion mediated drug resistance, against dexamethasone in MM.1S cells. Taken together, our data demonstrate that an IKKβ inhibitor induces cytotoxicity in MM cells in the BM milieu, providing the framework for clinical trials of these novel agents to improve patient outcome in MM.


1999 ◽  
Vol 19 (3) ◽  
pp. 1831-1840 ◽  
Author(s):  
Wei Du ◽  
Peter F. Lebowitz ◽  
George C. Prendergast

ABSTRACT Recent results have shown that the ability of farnesyltransferase inhibitors (FTIs) to inhibit malignant cell transformation and Ras prenylation can be separated. We proposed previously that farnesylated Rho proteins are important targets for alternation by FTIs, based on studies of RhoB (the FTI-Rho hypothesis). Cells treated with FTIs exhibit a loss of farnesylated RhoB but a gain of geranylgeranylated RhoB (RhoB-GG), which is associated with loss of growth-promoting activity. In this study, we tested whether the gain of RhoB-GG elicited by FTI treatment was sufficient to mediate FTI-induced cell growth inhibition. In support of this hypothesis, when expressed in Ras-transformed cells RhoB-GG induced phenotypic reversion, cell growth inhibition, and activation of the cell cycle kinase inhibitor p21WAF1. RhoB-GG did not affect the phenotype or growth of normal cells. These effects were similar to FTI treatment insofar as they were all induced in transformed cells but not in normal cells. RhoB-GG did not promote anoikis of Ras-transformed cells, implying that this response to FTIs involves loss-of-function effects. Our findings corroborate the FTI-Rho hypothesis and demonstrate that gain-of-function effects on Rho are part of the drug mechanism. Gain of RhoB-GG may explain how FTIs inhibit the growth of human tumor cells that lack Ras mutations.


Blood ◽  
2013 ◽  
Vol 122 (6) ◽  
pp. 1007-1016 ◽  
Author(s):  
Mingqiang Ren ◽  
Haiyan Qin ◽  
Eiko Kitamura ◽  
John K. Cowell

Key Points CNTRL-FGFR1 induces AML and T-cell lymphoma in murine and human progenitor cells. Simultaneously targeting FGFR1, FLT3, KIT, and MYC synergistically induces cell growth inhibition in CNTRL-FGFR1–transformed cells.


2020 ◽  
Vol 19 (16) ◽  
pp. 2019-2033 ◽  
Author(s):  
Pratibha Pandey ◽  
Mohammad H. Siddiqui ◽  
Anu Behari ◽  
Vinay K. Kapoor ◽  
Kumudesh Mishra ◽  
...  

Background: The aberrant alteration in Jab1 signalosome (COP9 Signalosome Complex Subunit 5) has been proven to be associated with the progression of several carcinomas. However the specific role and mechanism of action of Jab1 signalosome in carcinogenesis of gall bladder cancer (GBC) are poorly understood. Objective: The main objective of our study was to elucidate the role and mechanism of Jab1 signalosome in gall bladder cancer by employing siRNA. Methods: Jab1 overexpression was identified in gall bladder cancer tissue sample. The role of Jab1-siRNA approach in cell growth inhibition and apoptotic induction was then examined by RT-PCR, Western Blotting, MTT, ROS, Hoechst and FITC/Annexin-V staining. Results: In the current study, we have shown that overexpression of Jab1 stimulated the proliferation of GBC cells; whereas downregulation of Jab1 by using Jab1-siRNA approach resulted incell growth inhibition and apoptotic induction. Furthermore, we found that downregulation of Jab1 induces cell cycle arrest at G1 phase and upregulated the expression of p27, p53 and Bax gene. Moreover, Jab1-siRNA induces apoptosis by enhancing ROS generation and caspase-3 activation. In addition, combined treatment with Jab1-siRNA and gemicitabine demonstrated an enhanced decline in cell proliferation which further suggested increased efficacy of gemcitabine at a very lower dose (5μM) in combination with Jab1-siRNA. Conclusion: In conclusion, our study strongly suggests that targeting Jab1 signalosome could be a promising therapeutic target for the treatment of gall bladder cancer.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


Sign in / Sign up

Export Citation Format

Share Document