An immunocytochemical analysis of the vacuolar proton pump in Dictyostelium discoideum

1993 ◽  
Vol 105 (3) ◽  
pp. 849-859 ◽  
Author(s):  
K.V. Nolta ◽  
H. Padh ◽  
T.L. Steck

Antisera were generated in rabbits against the vacuolar proton pump (V-H(+)-ATPase) purified from Dictyostelium discoideum. The antisera inhibited V-H(+)-ATPase but not F1-ATPase activity and immunoprecipitated and immunoblotted only the polypeptide subunits of the V-H(+)-ATPase from cell homogenates. Immunocytochemical analysis of intact cells and subcellular fractions showed that the predominant immunoreactive organelles were clusters of empty, irregular vacuoles of various sizes and shapes, which corresponded to the acidosomes. The cytoplasmic surfaces of lysosomes, phagosomes and the tubular spongiome of the contractile vacuole also bore the pump antigen. The lumina of multivesicular bodies were often stained intensely; the internalized antigen may have been derived from acidosomes by autophagy. Antibodies against V-H(+)-ATPases from plant and animal cells cross-reacted with the proton pumps of Dictyostelium. Antisera directed against the V-H(+)-ATPase of Dictyostelium decorated a profusion of small vacuoles scattered throughout the cytoplasm of hepatocytes, epithelial cells, macrophages and fibroblasts. The pattern paralleled that of the endocytic and acidic spaces; there was no clear indication of discrete acidosomes in these mammalian cells. We conclude that the V-H(+)-ATPase in Dictyostelium is distributed among diverse endomembrane organelles and is immunologically cross-reactive with the proton pumps on endocytic vacuoles in mammalian cells.

1996 ◽  
Vol 109 (5) ◽  
pp. 1041-1051 ◽  
Author(s):  
T. Liu ◽  
M. Clarke

The vacuolar proton pump is a highly-conserved multimeric enzyme that catalyzes the translocation of protons across the membranes of eukaryotic cells. Its largest subunit (95-116 kDa) occurs in tissue and organelle-specific isoforms and thus may be involved in targeting the enzyme or modulating its function. In amoebae of Dictyostelium discoideum, proton pumps with a 100 kDa subunit are found in membranes of the contractile vacuole complex, an osmoregulatory organelle. We cloned the cDNA that encodes this 100 kDa protein and found that its sequence predicts a protein 45% identical (68% similar) to the corresponding mammalian proton pump subunit. Like the mammalian protein, the predicted Dictyostelium sequence contains six possible transmembrane domains and a single consensus sequence for N-linked glycosylation. Southern blot analysis detected only a single gene, which was designated vatM. Using genomic DNA and degenerate oligonucleotides based on conserved regions of the protein as primers, we generated products by polymerase chain reaction that included highly variable regions of this protein family. The cloned products were identical in nucleotide sequence to vatM, arguing that Dictyostelium cells contain only a single isoform of this proton pump subunit. Consistent with this interpretation, the amino acid sequences of peptides derived from a protein associated with endosomal membranes (Adessu et al. (1995) J. Cell Sci. 108, 3331–3337) match the predicted sequence of the protein encoded by vatM. Thus, a single isoform of the 100 kDa proton pump subunit appears to serve in both the contractile vacuole system and the endosomal/lysosomal system of Dictyostelium, arguing that this subunit is not responsible for regulating the differing abundance and function of proton pumps in these two compartments. Gene targeting experiments suggest that this subunit plays important (possibly essential) roles in Dictyostelium cells.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sabine Panzer ◽  
Chong Zhang ◽  
Tilen Konte ◽  
Celine Bräuer ◽  
Anne Diemar ◽  
...  

Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications.


1989 ◽  
Vol 108 (3) ◽  
pp. 865-874 ◽  
Author(s):  
H Padh ◽  
M Lavasa ◽  
T L Steck

We have examined the ameba Dictyostelium discoideum for evidence of a discrete, prelysosomal, acidic receiving compartment in endocytosis. We observed in the cytoplasm abundant round vacuoles with diameters up to 2 microns that concentrated acridine orange by a process inhibited by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). They were therefore taken to be acidic. The vacuoles were observed to fuse nearly quantitatively with primary phagosomes over 30 min and thereby to confer upon them the ability to accumulate acridine orange. The entry into lysosomes of phagocytic cargo occurred later. In the absence of phagocytosis, almost all of the acidic vacuoles rapidly accumulated fluorescent markers that had either been covalently coupled to the cell surface or fed as the soluble dextran conjugate. Therefore, these vacuoles also lie on the pathway of pinocytosis. A prominent subcellular ATPase activity inhibited by 25 microM NBD-Cl co-distributed on sucrose equilibrium density gradients with vacuoles capable of concentrating acridine orange in vitro. The peak was broad and more buoyant than that bearing lysosomal acid hydrolases, which contained only a minor amount of this ATPase. Also migrating in the buoyant peak were internalized plasma membrane markers; e.g., 3H-galactose had been covalently coupled to the surface of intact cells and allowed to enter pinosomes. We conclude that in D. discoideum an extensive prelysosomal vacuolar compartment provides the proton pumps that acidify both phagosomes and pinosomes.


1993 ◽  
Vol 265 (4) ◽  
pp. C901-C917 ◽  
Author(s):  
R. W. Van Dyke

Both lysosomes and endosomes are acidified by an electrogenic proton pump, although studies in intact cells indicate that the steady-state internal pH (pHi) of lysosomes is more acid than that of endosomes. We undertook the present study to examine in detail the acidification mechanism of purified rat liver secondary lysosomes and to compare it with that of a population of early endosomes. Both endosomes and lysosomes exhibited ATP-dependent acidification, but proton influx rates were 2.4- to 2.7-fold greater for endosomes than for lysosomes because of differences in both buffering capacity and acidification rates, suggesting that endosomes exhibited greater numbers or rates of proton pumps. Lysosomes, however, exhibited a more acidic steady-state pHi due in part to a slower proton leak rate. Changes in medium Cl- increased acidification rates of endosomes more than lysosomes, and the lysosome ATP-dependent interior-positive membrane potential was only partially eliminated by high-Cl- medium. Permeability studies suggested that lysosomes were less permeable to Na+, Li+, and Cl- and more permeable to K+ and PO4(2-) than endosomes. Na-K-adenosine-triphosphatase did not appear to regulate acidification of either vesicle type. Endosome and lysosome acidification displayed similar inhibition profiles to N-ethylmaleimide, dicyclohexyl-carbodiimide, and vanadate, although lysosomes were somewhat more sensitive [concentration producing 50% maximal inhibition (IC50) 1 nM] to bafilomycin A1 than endosomes (IC50 7.6 nM). Oligomycin (1.5-3 microM) stimulated lysosome acidification due to shunting of membrane potential. Overall, acidification of endosomes and lysosomes was qualitatively similar but quantitatively somewhat different, possibly related to differences in the density or rate of proton pumps as well as vesicle permeability to protons, anions, and other cations.


2021 ◽  
Vol 22 (3) ◽  
pp. 1391
Author(s):  
Andrey Kropotov ◽  
Veronika Kulikova ◽  
Kirill Nerinovski ◽  
Alexander Yakimov ◽  
Maria Svetlova ◽  
...  

Nicotinamide riboside (NR), a new form of vitamin B3, is an effective precursor of nicotinamide adenine dinucleotide (NAD+) in human and animal cells. The introduction of NR into the body effectively increases the level of intracellular NAD+ and thereby restores physiological functions that are weakened or lost in experimental models of aging and various pathologies. Despite the active use of NR in applied biomedicine, the mechanism of its transport into mammalian cells is currently not understood. In this study, we used overexpression of proteins in HEK293 cells, and metabolite detection by NMR, to show that extracellular NR can be imported into cells by members of the equilibrative nucleoside transporter (ENT) family ENT1, ENT2, and ENT4. After being imported into cells, NR is readily metabolized resulting in Nam generation. Moreover, the same ENT-dependent mechanism can be used to import the deamidated form of NR, nicotinic acid riboside (NAR). However, NAR uptake into HEK293 cells required the stimulation of its active utilization in the cytosol such as phosphorylation by NR kinase. On the other hand, we did not detect any NR uptake mediated by the concentrative nucleoside transporters (CNT) CNT1, CNT2, or CNT3, while overexpression of CNT3, but not CNT1 or CNT2, moderately stimulated NAR utilization by HEK293 cells.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 339
Author(s):  
Surinder M. Soond ◽  
Lyudmila V. Savvateeva ◽  
Vladimir A. Makarov ◽  
Neonila V. Gorokhovets ◽  
Paul A. Townsend ◽  
...  

Certain lysosomal cathepsin proteins have come into focus as being good candidates for therapeutic targeting, based on them being over-expressed in a variety of cancers and based on their regulation of the apoptotic pathway. Here, we report novel findings that highlight the ability of cathepsin S expression to be up-regulated under Paclitaxel-stimulatory conditions in kidney cell lines and it being able to cleave the apoptotic p21 BAX protein in intact cells and in vitro. Consistent with this, we demonstrate that this effect can be abrogated in vitro and in mammalian cells under conditions that utilize dominant-inhibitory cathepsin S expression, cathepsin S expression-knockdown and through the activity of a novel peptide inhibitor, CS-PEP1. Moreover, we report a unique role for cathepsin S in that it can cleave a polyubiquitinated-BAX protein intermediate and is a step that may contribute to down-regulating post-translationally-modified levels of BAX protein. Finally, CS-PEP1 may possess promising activity as a potential anti-cancer therapeutic against chemotherapeutic-resistant Renal Clear Cell Carcinoma kidney cancer cells and for combined uses with therapeutics such as Paclitaxel.


2021 ◽  
Vol 22 (4) ◽  
pp. 1834
Author(s):  
Tomoko Okada ◽  
Toshihiko Ogura

Autophagy is an intracellular self-devouring system that plays a central role in cellular recycling. The formation of functional autophagosomes depends on several autophagy-related proteins, including the microtubule-associated proteins 1A/1B light chain 3 (LC3) and the conserved autophagy-related gene 12 (Atg12). We have recently developed a novel scanning electron-assisted dielectric microscope (SE-ADM) for nanoscale observations of intact cells. Here, we used the SE-ADM system to observe LC3- and Atg12-containing autophagosomes in cells labelled in the culture medium with antibodies conjugated to colloidal gold particles. We observed that, during autophagosome formation, Atg12 localized along the actin meshwork structure, whereas LC3 formed arcuate or circular alignments. Our system also showed a difference in the distribution of LC3 and Atg12; Atg12 was broadly distributed while LC3 was more localized. The difference in the spatial distribution demonstrated by our system explains the difference in the size of fluorescent spots due to the fluorescently labelled antibodies observed using optical microscopy. The direct SE-ADM observation of cells should thus be effective in analyses of autophagosome formation.


2010 ◽  
Author(s):  
Stefan Ernst ◽  
Claire Batisse ◽  
Nawid Zarrabi ◽  
Bettina Böttcher ◽  
Michael Börsch

2005 ◽  
Vol 16 (8) ◽  
pp. 3865-3872 ◽  
Author(s):  
Masamitsu Kanada ◽  
Akira Nagasaki ◽  
Taro Q.P. Uyeda

Myosin II-dependent contraction of the contractile ring drives equatorial furrowing during cytokinesis in animal cells. Nonetheless, myosin II-null cells of the cellular slime mold Dictyostelium divide efficiently when adhering to substrates by making use of polar traction forces. Here, we show that in the presence of 30 μM blebbistatin, a potent myosin II inhibitor, normal rat kidney (NRK) cells adhering to fibronectin-coated surfaces formed equatorial furrows and divided in a manner strikingly similar to myosin II-null Dictyostelium cells. Such blebbistatin-resistant cytokinesis was absent in partially detached NRK cells and was disrupted in adherent cells if the advance of their polar lamellipodia was disturbed by neighboring cells. Y-27632 (40 μM), which inhibits Rho-kinase, was similar to 30 μM blebbistatin in that it inhibited cytokinesis of partially detached NRK cells but only prolonged furrow ingression in attached cells. In the presence of 100 μM blebbistatin, most NRK cells that initiated anaphase formed tight furrows, although scission never occurred. Adherent HT1080 fibrosarcoma cells also formed equatorial furrows efficiently in the presence of 100 μM blebbistatin. These results provide direct evidence for adhesion-dependent, contractile ring-independent equatorial furrowing in mammalian cells and demonstrate the importance of substrate adhesion for cytokinesis.


1994 ◽  
Vol 13 (2) ◽  
pp. 167-174 ◽  
Author(s):  
S C Low ◽  
K E Chapman ◽  
C R W Edwards ◽  
J R Seckl

ABSTRACT 11β-Hydroxysteroid dehydrogenase (11β-HSD) catalyses the metabolism of corticosterone to inert 11-dehydrocorticosterone, thus preventing glucocorticoid access to otherwise non-selective renal mineralocorticoid receptors (MRs), producing aldosterone selectivity in vivo. At least two isoforms of 11β-HSD exist. One isoform (11β-HSD1) has been purified from rat liver and an encoding cDNA cloned from a rat liver library. Transfection of rat 11β-HSD1 cDNA into amphibian cells with a mineralocorticoid phenotype encodes 11 β-reductase activity (activation of inert 11-dehydrocorticosterone) suggesting that 11β-HSD1 does not have the necessary properties to protect renal MRs from exposure to glucocorticoids. This function is likely to reside in a second 11β-HSD isoform. 11β-HSD1 is co-localized with glucocorticoid receptors (GRs) and may modulate glucocorticoid access to this receptor type. To examine the predominant direction of 11β-HSD1 activity in intact mammalian cells, and the possible role of 11β-HSD in regulating glucocorticoid access to GRs, we transfected rat 11β-HSD1 cDNA into a mammalian kidney-derived cell system (COS-7) which has little endogenous 11β-HSD activity or mRNA expression. Homogenates of COS-7 cells transfected with increasing amounts of 11β-HSD cDNA exhibited a dose-related increase in 11 β-dehydrogenase activity. In contrast, intact cells did not convert corticosterone to 11-dehydrocorticosterone over 24 h, but showed a clear dose-related 11β-reductase activity, apparent within 4 h of addition of 11-dehydrocorticosterone to the medium. To demonstrate that this reflected a change in functional intracellular glucocorticoids, COS-7 cells were co-transfected with an expression vector encoding GR and a glucocorticoid-inducible MMTV-LTR luciferase reporter construct, with or without 11β-HSD. Corticosterone induced MMTV-LTR luciferase expression in the presence or absence of 11β-HSD. 11-Dehydrocorticosterone was without activity in the absence of 11β-HSD, but induced MMTV-LTR luciferase activity in the presence of 11β-HSD. These results indicate that rat 11β-HSD1 can behave exclusively as a reductase in intact mammalian cells. Thus in some tissues in vivo, 11β-HSD1 may regulate ligand access to GRs by reactivating inert glucocorticoids.


Sign in / Sign up

Export Citation Format

Share Document