scholarly journals Prelysosomal acidic vacuoles in Dictyostelium discoideum.

1989 ◽  
Vol 108 (3) ◽  
pp. 865-874 ◽  
Author(s):  
H Padh ◽  
M Lavasa ◽  
T L Steck

We have examined the ameba Dictyostelium discoideum for evidence of a discrete, prelysosomal, acidic receiving compartment in endocytosis. We observed in the cytoplasm abundant round vacuoles with diameters up to 2 microns that concentrated acridine orange by a process inhibited by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). They were therefore taken to be acidic. The vacuoles were observed to fuse nearly quantitatively with primary phagosomes over 30 min and thereby to confer upon them the ability to accumulate acridine orange. The entry into lysosomes of phagocytic cargo occurred later. In the absence of phagocytosis, almost all of the acidic vacuoles rapidly accumulated fluorescent markers that had either been covalently coupled to the cell surface or fed as the soluble dextran conjugate. Therefore, these vacuoles also lie on the pathway of pinocytosis. A prominent subcellular ATPase activity inhibited by 25 microM NBD-Cl co-distributed on sucrose equilibrium density gradients with vacuoles capable of concentrating acridine orange in vitro. The peak was broad and more buoyant than that bearing lysosomal acid hydrolases, which contained only a minor amount of this ATPase. Also migrating in the buoyant peak were internalized plasma membrane markers; e.g., 3H-galactose had been covalently coupled to the surface of intact cells and allowed to enter pinosomes. We conclude that in D. discoideum an extensive prelysosomal vacuolar compartment provides the proton pumps that acidify both phagosomes and pinosomes.

1993 ◽  
Vol 105 (3) ◽  
pp. 849-859 ◽  
Author(s):  
K.V. Nolta ◽  
H. Padh ◽  
T.L. Steck

Antisera were generated in rabbits against the vacuolar proton pump (V-H(+)-ATPase) purified from Dictyostelium discoideum. The antisera inhibited V-H(+)-ATPase but not F1-ATPase activity and immunoprecipitated and immunoblotted only the polypeptide subunits of the V-H(+)-ATPase from cell homogenates. Immunocytochemical analysis of intact cells and subcellular fractions showed that the predominant immunoreactive organelles were clusters of empty, irregular vacuoles of various sizes and shapes, which corresponded to the acidosomes. The cytoplasmic surfaces of lysosomes, phagosomes and the tubular spongiome of the contractile vacuole also bore the pump antigen. The lumina of multivesicular bodies were often stained intensely; the internalized antigen may have been derived from acidosomes by autophagy. Antibodies against V-H(+)-ATPases from plant and animal cells cross-reacted with the proton pumps of Dictyostelium. Antisera directed against the V-H(+)-ATPase of Dictyostelium decorated a profusion of small vacuoles scattered throughout the cytoplasm of hepatocytes, epithelial cells, macrophages and fibroblasts. The pattern paralleled that of the endocytic and acidic spaces; there was no clear indication of discrete acidosomes in these mammalian cells. We conclude that the V-H(+)-ATPase in Dictyostelium is distributed among diverse endomembrane organelles and is immunologically cross-reactive with the proton pumps on endocytic vacuoles in mammalian cells.


2000 ◽  
Vol 148 (2) ◽  
pp. 317-324 ◽  
Author(s):  
Julia Avery ◽  
Darren J. Ellis ◽  
Thorsten Lang ◽  
Phillip Holroyd ◽  
Dietmar Riedel ◽  
...  

We have developed a cell-free system for regulated exocytosis in the PC12 neuroendocrine cell line. Secretory vesicles were preloaded with acridine orange in intact cells, and the cells were sonicated to produce flat, carrier-supported plasma membrane patches with attached vesicles. Exocytosis resulted in the release of acridine orange which was visible as a disappearance of labeled vesicles and, under optimal conditions, produced light flashes by fluorescence dequenching. Exocytosis in vitro requires cytosol and Ca2+ at concentrations in the micromolar range, and is sensitive to Tetanus toxin. Imaging of membrane patches at diffraction- limited resolution revealed that 42% of docked granules were released in a Ca2+-dependent manner dur- ing 1 min of stimulation. Electron microscopy of membrane patches confirmed the presence of dense-core vesicles. Imaging of membrane patches by atomic force microscopy revealed the presence of numerous particles attached to the membrane patches which decreased in number upon stimula- tion. Thus, exocytotic membrane fusion of single vesicles can be monitored with high temporal and spatial resolution, while providing access to the site of exocytosis for biochemical and molecular tools.


1968 ◽  
Vol 37 (2) ◽  
pp. 412-423 ◽  
Author(s):  
Rochelle Hirschhorn ◽  
Günter Brittinger ◽  
Kurt Hirschhorn ◽  
Gerald Weissmann

Subcellular fractions were isolated by differential centrifugation from pure suspensions of human blood lymphocytes incubated with and without phytohemagglutinin (PHA). Between 30 and 120 min after addition of PHA to intact cells, redistribution of acid hydrolases (beta glucuronidase, acid phosphatase), from a 20,000 g x 20 min granular fraction into the corresponding supernatant, was observed. No increase in total acid hydrolase activity was found at these times. The mitochondrial marker enzyme, malate dehydrogenase, did not undergo redistribution. Granules derived from PHA-treated cells became more fragile upon subsequent incubation with membrane-disruptive agents in vitro (streptolysin S, filipin). These changes were associated with an increase in the over-all permeability of the stimulated cell to substances in the surrounding medium, such as neutral red. Augmentation of dye entry into lymphocytes required intact metabolism as judged by response to temperature and inhibitors (cyanide, antimycin A, 2,4-dinitrophenol). PHA, however, did not release enzyme activity from hydrolase-rich granules in vitro or render them more susceptible to subsequent challenge with membrane-disruptive agents. These studies suggest that PHA induces early changes in the surface of lymphocytes. The consequent redistribution of acid hydrolases may play a role in remodeling processes of the stimulated cells.


2018 ◽  
Author(s):  
Manuel Rhiel ◽  
Bernd Hessling ◽  
Qi Gao ◽  
Andrea Hellwig ◽  
Frank Adolf ◽  
...  

AbstractRetrieval of escaped ER-residents and intra-Golgi transport is facilitated by coat protein complex I (COPI)-coated vesicles. Their formation requires the activated small GTPase ADP-ribosylation factor (Arf) and the coat complex coatomer. Here we assess the protein composition of COPI vesicles by combining stable isotope labeling with amino acids in cell culture (SILAC) with in vitro reconstitution of COPI vesicles from semi-intact cells (SIC) using the minimal set of recombinant coat proteins. This approach yields an unbiased picture of the proteome of these carriers. We define a set of ~40 proteins common to COPI vesicles produced from different human as well as murine cell lines. Almost all bona fide COPI vesicle proteins are either ER-Golgi cycling proteins or Golgi-residents, while only a minor portion of secreted proteins was found. Moreover, we have investigated a putative role of γ- and ζ-COP as well as Arf isoforms in sorting and recruitment of specific proteins into COPI vesicles. As opposed to the related COPII system, all isoforms of coatomer and all COPI-forming isoforms of the small GTPase Arf produce COPI-coated vesicles with strikingly similar protein compositions. We present a model for the core architecture of COPI vesicles.


1979 ◽  
Vol 27 (1) ◽  
pp. 102-113 ◽  
Author(s):  
C Nicolini ◽  
A Belmont ◽  
S Parodi ◽  
S Lessin ◽  
S Abraham

We present results involving an approach to acridine orange staining of intact cells based on basic physicochemical considerations. We show by static microfluorometry of several in vitro and in vivo cell lines that the important parameters for such staining are the molar ratio (Formula: see text), and molar concentration of acridine orange. Differential nuclear DNA and cytoplasmic RNA staining are totally controlled by these two parameters. We show this by a physicochemical model of cell-dye interaction. Finally, we use the method to study the growth parameters of complex in vivo cell populations by automated multiparameter flow microfluorometry. We have explored also, both by static and flow systems, the effect on AO-cell staining of various cell pretreatments such as Triton X-100 and chelating agents.


1990 ◽  
Vol 45 (7-8) ◽  
pp. 823-828 ◽  
Author(s):  
Kai Griebenow ◽  
Alfred R. Holzwarth ◽  
Kurt Schaffner

Abstract Chlorosomcs containing BChl a790 have been isolated from Chloroflexus aurantiacus on sucrose density gradients using the detergents Miranol. Deriphat. N.N-dimethyldodecyl- aminc-N-oxidc, and dodecyl-p-D-rnaltoside. All freshly prepared samples cither lack the poly- peptide of approximately 5 kDa. which appears identical with the 5.6-kDa protein previously assigned the role of BChl c-binding [R. G. Feick and R. C. Fuller. Biochemistry 23, 3693- 3700 (1984)]. or they contain only a minor amount thereof. This polypeptide accumulates in the chlorosomcs in vitro at room temperature within 24 h after isolation. The reaction cannot be prevented simply by addition of the protease inhibitors benzamidinc. F.-caproic ac|d. and phenylmethylsulfonyl fluoride. However, upon denaturation, as required lor gel electrophore- sis, of the freshly isolated chlorosome sample the formation of the 5-kDa polypeptide is inhibit- ed. We conclude that this species, viz. 5.6-kDa protein, is a degradation product of another - as yet unidentified - protein present in the chlorosome preparations. Despite the pronounced proteolytic activity which affords the 5-kDa fragment, the native absorption and fluorescence properties of BChl c and BChl a arc essentially not changed in these chlorosome preparations.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


1993 ◽  
Vol 265 (4) ◽  
pp. C901-C917 ◽  
Author(s):  
R. W. Van Dyke

Both lysosomes and endosomes are acidified by an electrogenic proton pump, although studies in intact cells indicate that the steady-state internal pH (pHi) of lysosomes is more acid than that of endosomes. We undertook the present study to examine in detail the acidification mechanism of purified rat liver secondary lysosomes and to compare it with that of a population of early endosomes. Both endosomes and lysosomes exhibited ATP-dependent acidification, but proton influx rates were 2.4- to 2.7-fold greater for endosomes than for lysosomes because of differences in both buffering capacity and acidification rates, suggesting that endosomes exhibited greater numbers or rates of proton pumps. Lysosomes, however, exhibited a more acidic steady-state pHi due in part to a slower proton leak rate. Changes in medium Cl- increased acidification rates of endosomes more than lysosomes, and the lysosome ATP-dependent interior-positive membrane potential was only partially eliminated by high-Cl- medium. Permeability studies suggested that lysosomes were less permeable to Na+, Li+, and Cl- and more permeable to K+ and PO4(2-) than endosomes. Na-K-adenosine-triphosphatase did not appear to regulate acidification of either vesicle type. Endosome and lysosome acidification displayed similar inhibition profiles to N-ethylmaleimide, dicyclohexyl-carbodiimide, and vanadate, although lysosomes were somewhat more sensitive [concentration producing 50% maximal inhibition (IC50) 1 nM] to bafilomycin A1 than endosomes (IC50 7.6 nM). Oligomycin (1.5-3 microM) stimulated lysosome acidification due to shunting of membrane potential. Overall, acidification of endosomes and lysosomes was qualitatively similar but quantitatively somewhat different, possibly related to differences in the density or rate of proton pumps as well as vesicle permeability to protons, anions, and other cations.


Separations ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 57
Author(s):  
Rokayya Sami ◽  
Abeer Elhakem ◽  
Mona Alharbi ◽  
Manal Almatrafi ◽  
Nada Benajiba ◽  
...  

Onions contain high antioxidants compounds that fight inflammation against many diseases. The purpose was to investigate some selected bioactive activities of onion varieties (Yellow, Red, Green, Leek, and Baby). Antioxidant assays and anti-inflammatory activities such as NO production with the addition of some bioactive components were determined and analyzed by using a spectrophotometer. Gas chromatography and mass spectrometry (GC–MS) was used for the volatile compounds, while an Atomic absorption spectrometer was used for mineral determinations. Red variety achieved the highest antioxidant activities. The total flavonoids were between (12.56 and 353.53 mg Quercetin/gin dry weight) (dw) and the total phenol was (8.75–25.73 mg/g dw). Leek, Yellow and Green extracts achieved highly anti-inflammatory values (3.71–4.01 μg/mL) followed by Red and Baby extracts, respectively. The highest contents of sodium, potassium, zinc, and calcium were established for Red onions. Furfuraldehyde, 5-Methyl-2-furfuraldehyde, 2-Methyl-2-pentenal, and 1-Propanethiol were the most predominant, followed by a minor abundance of the other compounds such as Dimethyl sulfide, Methyl allyl disulfide, Methyl-trans-propenyl-disulfide, and Methyl propyl disulfide. The results recommend that these varieties could act as sources of essential antioxidants and anti-inflammatories to decrease inflammation and oxidative stresses, especially red onions that recorded high activities.


1979 ◽  
Vol 34 (1-2) ◽  
pp. 90-95 ◽  
Author(s):  
Fouad M. Fouad ◽  
D. Waldron-Edward

Abstract The results show that incubation of gastric mucosal cells from rat at pH ~4.5 or in the presence of aspirin is associated with a specific increase in the activity of some acid-hydrolases. Intracellular glycoproteins, isolated by non-degradative techniques from rat or dog fundic mucosal cells, were found to be potential bio-substrates for these acid-hydrolyses. This may suggest that cleavage of the carbohydrate moieties of the intracellular and mucosal cell wall glycoproteins is a fundamental step in the development of gastric ulceration. A model for gastric lesions is proposed and discussed in the light of the results obtained.


Sign in / Sign up

Export Citation Format

Share Document