GST-lamin fusion proteins act as dominant negative mutants in Xenopus egg extract and reveal the function of the lamina in DNA replication

1997 ◽  
Vol 110 (20) ◽  
pp. 2507-2518 ◽  
Author(s):  
D.J. Ellis ◽  
H. Jenkins ◽  
W.G. Whitfield ◽  
C.J. Hutchison

A cDNA encoding Xlamin B1 was cloned from a whole ovary mRNA by RT-PCR. GST-lamin fusion constructs were generated from this cDNA by first creating convenient restriction sites within the Xlamin B1 coding sequence, using PCR directed mutagenesis, and then sub-cloning relevant sequences into pGEX-4T-3. Two expression constructs were made, the first, termed delta 2+ lacked sequences encoding the amino-terminal ‘head domain’ of lamin B1 but included sequences encoding the nuclear localization signal sequence (NLS). The second expression construct, termed delta 2-, lacked sequences encoding the amino-terminal ‘head domain’ as well as sequences encoding the NLS. Purified fusion proteins expressed from these constructs, when added to egg extracts prior to sperm pronuclear assembly, formed hetero-oligomers with the endogenous lamin B3. The delta 2+ fusion protein prevented nuclear lamina assembly but not nuclear membrane assembly. The resulting nuclei were small (approximately 10 microns in diameter), did not assemble replication centers and failed to initiate DNA replication. When the delta 2- fusion protein was added to egg extracts prior to sperm pronuclear assembly, lamina assembly was delayed but not prevented. The resulting nuclei although small (approximately 12 microns), did form replication centers and initiated DNA replication. When added to egg extracts after sperm pronuclear assembly was completed delta 2+, but not delta 2-, entered the pre-formed nuclei causing lamina disassembly. However, the disassembly of the lamina by delta 2+ did not result in the disruption of replication centers and indeed these centres remained functional. These results are consistent with the hypothesis that lamina assembly precedes and is required for the formation of replication centers but does not support those centers directly.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 664-664
Author(s):  
Jay L. Hess ◽  
Zhaohai Yang ◽  
Haoren Wang ◽  
Ya-Xiong Chen ◽  
Thomas A. Milne ◽  
...  

Abstract Rearrangements of the mixed lineage leukemia gene MLL are associated with aggressive lymphoid and myeloid leukemias. The resulting MLL fusion proteins enforce high-level expression of HOX genes including HOX A7 and HOX A9 and the HOX cofactor MEIS1, which is pivotal for leukemogenesis. The mechanism by which this occurs and the relationship to normal MLL function is unknown. MLL and MLL fusion proteins bind with a similar distribution in hematopoietic cells at both promoters and coding sequences of target genes. Our studies suggest that a major mechanism of regulating MLL, which is expressed throughout hematopoiesis, is through modulating it’s binding to target promoters. MLL binds directly to the promoters and coding regions of HOX A7, HOX A9, and MEIS1 only in myeloblasts and not in neutrophils, indicating MLL is physically associated with genes only when they are actively transcribed. Expression of A cluster HOX loci and MEIS1 remains persistently elevated when MLL-ENL or dimerized MLL fusion proteins are expressed. Expression of either fusion protein is associated with increased binding of wild type MLL accompanied by increases in histone acetylation and histone H3 lysine 4, marks that are normally almost completely erased during myeloid differentiation. In addition MLL-ENL induces increased lysine 79 methylation. Both MLL and MLL fusion proteins interact with the tumor suppressor menin via sequences in the extreme amino terminus of MLL. In addition both proteins physically interact with RNA polymerase II, which shows abnormal pausing in the coding regions of HOX genes in Mll null cells. Genetic ablation of menin or expression of a dominant negative inhibitor of the MLL-menin interaction inhibits the growth of MLL fusion protein transformed cells. These findings suggest MLL fusion proteins act in concert with menin, MLL and other coactivators to deregulate HOX gene expression pivotal for transformation.


1997 ◽  
Vol 136 (6) ◽  
pp. 1201-1212 ◽  
Author(s):  
Timothy P. Spann ◽  
Robert D. Moir ◽  
Anne E. Goldman ◽  
Reimer Stick ◽  
Robert D. Goldman

The nuclear lamina is a fibrous structure that lies at the interface between the nuclear envelope and the nucleoplasm. The major proteins comprising the lamina, the nuclear lamins, are also found in foci in the nucleoplasm, distinct from the peripheral lamina. The nuclear lamins have been associated with a number of processes in the nucleus, including DNA replication. To further characterize the specific role of lamins in DNA replication, we have used a truncated human lamin as a dominant negative mutant to perturb lamin organization. This protein disrupts the lamin organization of nuclei when microinjected into mammalian cells and also disrupts the lamin organization of in vitro assembled nuclei when added to Xenopus laevis interphase egg extracts. In both cases, the lamina appears to be completely absent, and instead the endogenous lamins and the mutant lamin protein are found in nucleoplasmic aggregates. Coincident with the disruption of lamin organization, there is a dramatic reduction in DNA replication. As a consequence of this disruption, the distributions of PCNA and the large subunit of the RFC complex, proteins required for the elongation phase of DNA replication, are altered such that they are found within the intranucleoplasmic lamin aggregates. In contrast, the distribution of XMCM3, XORC2, and DNA polymerase α, proteins required for the initiation stage of DNA replication, remains unaltered. The data presented demonstrate that the nuclear lamins may be required for the elongation phase of DNA replication.


1993 ◽  
Vol 123 (1) ◽  
pp. 119-126 ◽  
Author(s):  
W Voos ◽  
B D Gambill ◽  
B Guiard ◽  
N Pfanner ◽  
E A Craig

To test the hypothesis that 70-kD mitochondrial heat shock protein (mt-hsp70) has a dual role in membrane translocation of preproteins we screened preproteins in an attempt to find examples which required either only the unfoldase or only the translocase function of mt-hsp70. We found that a series of fusion proteins containing amino-terminal portions of the intermembrane space protein cytochrome b2 (cyt. b2) fused to dihydrofolate reductase (DHFR) were differentially imported into mitochondria containing mutant hsp70s. A fusion protein between the amino-terminal 167 residues of the precursor of cyt. b2 and DHFR was efficiently transported into mitochondria independently of both hsp70 functions. When the length of the cyt. b2 portion was increased and included the heme binding domain, the fusion protein became dependent on the unfoldase function of mt-hsp70, presumably caused by a conformational restriction of the heme-bound preprotein. In the absence of heme the noncovalent heme binding domain in the longer fusion proteins no longer conferred a dependence on the unfoldase function. When the cyt. b2 portion of the fusion protein was less than 167 residues, its import was still independent of mt-hsp70 function; however, deletion of the intermembrane space sorting signal resulted in preproteins that ended up in the matrix of wild-type mitochondria and whose translocation was strictly dependent on the translocase function of mt-hsp70. These findings provide strong evidence for a dual role of mt-hsp70 in membrane translocation and indicate that preproteins with an intermembrane space sorting signal can be correctly imported even in mutants with severely impaired hsp70 function.


Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1157-1163 ◽  
Author(s):  
EA Barron-Casella ◽  
TS Kickler ◽  
OC Rogers ◽  
JF Casella

Abstract The platelet antigens, PlA1 and PlA2, are responsible for most cases of posttransfusion purpura (PTP) and neonatal alloimmune thrombocytopenia (NAIT) in the caucasian population and are determined by two allelic forms of the platelet glycoprotein GPIIIa gene. To study the interaction between these antigens and their respective antibodies, we inserted the sequence that encodes the signal peptide and the N- terminal 66 amino acids of the PlA1 form of GPIIIa into the expression vector pGEX1. To express the PlA2 antigen, nucleotide 196 of the PlA1 coding sequence was mutated to the PlA2 allelic form. When transformed and induced in Escherichia coli, the two constructs produce glutathione S-transferase (GST)/N-terminal GPIIIa fusion proteins, one containing leucine at position 33 (PlA1), the other proline (PlA2). These proteins are easily purified in milligram quantities using glutathione-Sepharose and react specifically with their respective antibodies by immunoblot and enzyme-linked immunosorbent assay. Antigenicity of the PlA1 fusion protein in reduced glutathione increases with time; moreover, the addition of oxidized glutathione accelerates this process, presumably because of formation of the native disulfide bonds. Neutralization assays indicate that the PlA1 fusion protein competes for all of the anti-PlA1 antibody in the serum of patients with PTP and NAIT that is capable of interacting with the surface of intact platelets. This study shows that the GST/N-terminal GPIIIa fusion proteins contain conformational epitopes that mimic those involved in alloimmunization, and that regions other than the amino terminal 66 amino acids of GPIIIa are not likely to contain or be required for the development of functional PlA1 epitopes. Furthermore, these recombinant proteins can be used for the affinity-purification of clinical anti-PlA1 antibodies and specific antibody identification by western blotting, making them useful in the diagnosis of patients alloimmunized to PlA1 alloantigens.


1989 ◽  
Vol 9 (8) ◽  
pp. 3155-3165 ◽  
Author(s):  
P N Lipke ◽  
D Wojciechowicz ◽  
J Kurjan

We have cloned the alpha-agglutinin structural gene, AG alpha 1, by the isolation of alpha-specific agglutination-defective mutants, followed by isolation of a complementing plasmid. Independently isolated alpha-specific agglutination-defective mutations were in a single complementation group, consistent with biochemical results indicating that the alpha-agglutinin is composed of a single polypeptide. Mapping results suggested that the complementation group identified by these mutants is allelic to the ag alpha 1 mutation identified previously. Expression of AG alpha 1 RNA was alpha specific and inducible by a-factor. Sequences similar to the consensus sequences for positive control by MAT alpha 1 and pheromone induction were found upstream of the AG alpha 1 initiation codon. The AG alpha 1 gene could encode a 650-amino-acid protein with a putative signal sequence, 12 possible N-glycosylation sites, and a high proportion of serine and threonine residues, all of which are features expected for the alpha-agglutinin sequence. Disruption of the AG alpha 1 gene resulted in failure to express alpha-agglutinin and loss of cellular agglutinability in alpha cells. An Escherichia coli fusion protein containing 229 amino acids of the AG alpha 1 sequence was recognized by an anti-alpha-agglutinin antibody. In addition, the ability of this antibody to inhibit agglutination was prevented by this fusion protein. These results indicate that AG alpha 1 encodes alpha-agglutinin. Features of the AG alpha 1 gene product suggest that the amino-terminal half of the protein contains the a-agglutinin binding domain and that the carboxy-terminal half contains a cell surface localization domain, possibly including a glycosyl phosphatidylinositol anchor.


1995 ◽  
Vol 108 (1) ◽  
pp. 235-244 ◽  
Author(s):  
J. Murphy ◽  
C.M. Crompton ◽  
S. Hainey ◽  
G.A. Codd ◽  
C.J. Hutchison

Cell-free extracts of Xenopus eggs support nuclear assembly and DNA replication in vitro. Extracts supplemented with the protein phosphatase inhibitor microcystin-LR displayed various inhibitory effects at different concentrations of the toxin. In the presence of cycloheximide, additions of microcystin did not induce histone H1-kinase activity. Nevertheless, increasing concentrations of microcystin did sequentially prevent DNA replication, nuclear lamina assembly and nuclear envelope assembly. DNA replication was prevented when microcystin was added at 250 nM. Furthermore, this effect could be reversed after the addition of the catalytic sub-unit of protein phosphatase 2A to inhibited extracts. At a concentration of 250 nM microcystin, nuclear membrane assembly, nuclear lamina assembly and nuclear transport all occurred in egg extracts. In addition single-stranded M13 DNA replication was also permitted. However, it appeared that replicase assembly was not completed, since nuclei assembled in microcystin-treated extracts displayed an unusual distribution of proliferating cell nuclear antigen (PCNA). Although PCNA was located at sites that resembled pre-replication foci, this nuclear protein was readily solubilised when nuclei were isolated and extracted sequentially with Triton, nucleases and salts. Despite this, nuclei containing pre-assembled replication forks could synthesise DNA when transferred into microcystin-treated extracts.


1990 ◽  
Vol 97 (1) ◽  
pp. 177-184
Author(s):  
L.S. Cox ◽  
G.H. Leno

We describe a cell-free extract derived from the oocytes of Xenopus laevis. The oocyte extract is capable of decondensing sperm chromatin and of replicating single-stranded DNA in a semiconservative, aphidicolin-sensitive manner. In addition, oocyte extract supports the elongation phase of DNA synthesis in nuclei that have been preinitiated for replication. All of these properties are shared by previously described egg extracts. However, oocyte extracts differ from egg extracts in two important ways. First, they cannot support nuclear assembly, as visualised by phase-contrast, fluorescence and electron microscopy. Second, they do not initiate replication on chromatin or nuclei de novo. Crude low-speed supernatants can be partially fractionated into soluble and vesicular components by high-speed centrifugation. Such fractions from eggs can be functionally reconstituted, but the oocyte soluble fraction does not acquire the ability to assemble nuclei, or replicate them, even when supplemented with the egg vesicular fraction. Similarly, oocyte vesicles cannot substitute for egg vesicles on reconstitution with the egg soluble fraction. When the requirement for nuclear assembly is bypassed by using preformed, quiescent nuclei, replication is observed in egg but not oocyte extracts. However, the oocyte extract is not inhibitory for initiation of replication, as it does not prevent replication of sperm nuclei when mixed with egg extract. We suggest that the different capabilities of egg and oocyte extracts could provide the basis of an assay system for identifying factors involved in the initiation of DNA replication.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 56-56 ◽  
Author(s):  
Andrew G. Muntean ◽  
Eric M Granowicz ◽  
Jay L. Hess

Abstract Abstract 56 Balanced chromosomal translocations of the MLL gene located on chromosome 11q23 result in the expression of a chimeric fusion proteins with enhanced transcriptional activity. The HOX genes and their co-factors, such as MEIS1 and PBX2, are critical downstream targets of MLL fusion proteins and essential for transformation. Previously we showed MLL fusion proteins are critically dependent on a direct interaction with the RNA Pol II Associated Factor complex (PAFc). PAFc is a protein complex important for the initiation, elongation and termination of transcription. It is also necessary for histone H2B K120 mono-ubiquitination through the direct recruitment of the BRE1/RAD6 E3 ubiquitin ligase complex. MLL fusion proteins make two direct contacts with the PAF1 and CTR9 subunits of the PAFc that are crucial for MLL fusion protein mediated transformation. Deletion of regions of MLL that interact with PAFc abrogates AML in mouse bone marrow transplantation assays. Here we tested the general requirement for PAFc in AML using a conditional knockout mouse model of one component of PAFc, Cdc73. These studies show that PAFc is necessary for growth of both E2A-HLF and MLL-AF9 transformed cells. Excision of Cdc73 leads to decreased expression of the MLL target genes Hoxa9 and Meis1, decreased colony formation and decreased proliferation of leukemic blasts and ultimately apoptosis. We then performed chromatin immunoprecipitation assays to assess the binding of PAFc and MLL to target loci with and without Cdc73. Excision of Cdc73 leads to a rapid decrease in association of PAFc as well as MLL fusion proteins and wild type MLL at target loci confirming that proper targeting of MLL fusion proteins requires PAFc. A decrease in H3K4me3 and H2Bub is also observed and consistent with a role of PAFc in the deposition of these epigenetic marks. We then sought to disrupt the MLL-PAFc interaction through expression of a small 40 amino acid fragment of MLL that interacts with the PAF1 subunit of PAFc. As the MLL-PAFc interaction involves interactions between MLL and both CTR9 and PAF1, it was unknown whether targeting one interaction site would be sufficient to disrupt transformation. Indeed, expression of the short fragment encompassing the pre-CxxC region of MLL acts as a dominant negative and disrupts the MLL-PAFc interaction, significantly decreasing Hox gene expression, colony formation and cell proliferation of MLL-AF9 transformed cells. Importantly, expression of the MLL fragment selectively inhibited MLL fusion mediated leukemic transformation and cell growth while the growth and proliferation of E2A-HLF cells is unaffected. Together these data show that targeting the MLL-PAFc interaction with a small MLL fragment can act as a dominant negative and selectively inhibit the growth of AML cells transformed with MLL fusion proteins. These data also suggest the MLL-PAF1 interaction surface is a promising region for therapeutic targeting. Disclosures: No relevant conflicts of interest to declare.


1989 ◽  
Vol 109 (6) ◽  
pp. 2895-2903 ◽  
Author(s):  
A Garcia ◽  
E Coudrier ◽  
J Carboni ◽  
J Anderson ◽  
J Vandekerkhove ◽  
...  

The actin bundle within each microvillus of the intestinal brush border is laterally tethered to the membrane by bridges composed of the protein complex, 110-kD-calmodulin. Previous studies have shown that avian 110-kD-calmodulin shares many properties with myosins including mechanochemical activity. In the present study, a cDNA molecule encoding 1,000 amino acids of the 110-kD protein has been sequenced, providing direct evidence that this protein is a vertebrate homologue of the tail-less, single-headed myosin I first described in amoeboid cells. The primary structure of the 110-kD protein (or brush border myosin I heavy chain) consists of two domains, an amino-terminal "head" domain and a 35-kD carboxy-terminal "tail" domain. The head domain is homologous to the S1 domain of other known myosins, with highest homology observed between that of Acanthamoeba myosin IB and the S1 domain of the protein encoded by bovine myosin I heavy chain gene (MIHC; Hoshimaru, M., and S. Nakanishi. 1987. J. Biol. Chem. 262:14625-14632). The carboxy-terminal domain shows no significant homology with any other known myosins except that of the bovine MIHC. This demonstrates that the bovine MIHC gene most probably encodes the heavy chain of bovine brush border myosin I (BBMI). A bacterially expressed fusion protein encoded by the brush border 110-kD cDNA binds calmodulin. Proteolytic removal of the carboxy-terminal domain of the fusion protein results in loss of calmodulin binding activity, a result consistent with previous studies on the domain structure of the 110-kD protein. No hydrophobic sequence is present in the molecule indicating that chicken BBMI heavy chain is probably not an integral membrane protein. Northern blot analysis of various chicken tissue indicates that BBMI heavy chain is preferentially expressed in the intestine.


1999 ◽  
Vol 13 (12) ◽  
pp. 2122-2136 ◽  
Author(s):  
Pei-Yu Chien ◽  
Masafumi Ito ◽  
Youngkyu Park ◽  
Tetsuya Tagami ◽  
Barry D. Gehm ◽  
...  

Abstract Nuclear receptor corepressor (NCoR) mediates repression (silencing) of basal gene transcription by nuclear receptors for thyroid hormone and retinoic acid. The goal of this study was to create novel estrogen receptor (ER) mutants by fusing transferable repressor domains from the N-terminal region of NCoR to a functional ER fragment. Three chimeric NCoR-ER proteins were created and shown to lack transcriptional activity. These fusion proteins silenced basal transcription of the ERE2-tk-Luc reporter gene and inhibited the activity of cotransfected wild-type ER (wtER), indicating that they possess dominant negative activity. One of the fusion proteins (CDE-RD1), containing the ER DNA-binding and ligand-binding domains linked to the NCoR repressor domain (RD1), was selected for detailed examination. Its hormone affinity, intracellular localization, and level of expression in transfected cells were similar to wtER, and it bound to the estrogen response element (ERE) DNA in gel shift assays. Glutathione-S-transferase pull-down assays showed that CDE-RD1 retains the ability to bind to steroid receptor coactivator-1. Introduction of a DNA-binding domain mutation into the CDE-RD1 fusion protein eliminated silencing and dominant negative activity. Thus, the RD1 repressor domain prevents transcriptional activation despite the apparent ability of CDE-RD1 to bind DNA, ligand, and coactivators. Transcriptional silencing was incompletely reversed by trichostatin A, suggesting a histone deacetylase-independent mechanism for repression. CDE-RD1 inhibited ER-mediated transcription in T47D and MDA-MB-231 breast cancer cells and repressed the growth of T47D cells when delivered to the cells by a retroviral vector. These ER-NCoR fusion proteins provide a novel means for inhibiting ER-mediated cellular responses, and analogous strategies could be used to create dominant negative mutants of other transcription factors.


Sign in / Sign up

Export Citation Format

Share Document