Coexpression of both types of desmosomal cadherin and plakoglobin confers strong intercellular adhesion

1998 ◽  
Vol 111 (4) ◽  
pp. 495-509 ◽  
Author(s):  
C. Marcozzi ◽  
I.D. Burdett ◽  
R.S. Buxton ◽  
A.I. Magee

Desmosomes are unique intercellular junctions in that they invariably contain two types of transmembrane cadherin molecule, desmocollins and desmogleins. In addition they possess a distinct cytoplasmic plaque structure containing a few major proteins including desmoplakins and the armadillo family member plakoglobin. Desmosomal cadherins are putative cell-cell adhesion molecules and we have tested their adhesive capacity using a transfection approach in mouse L cells. We find that L cells expressing either one or both of the desmosomal cadherins desmocollin 2a or desmoglein 1 display weak cell-cell adhesion activity that is Ca2+-dependent. Both homophilic and heterophilic adhesion could be detected. However, co-expression of plakoglobin with both desmosomal cadherins, but not with desmoglein 1 alone, resulted in a dramatic potentiation of cell-cell aggregation and the accumulation of detergent-insoluble desmosomal proteins at points of cell-cell contact. The effect of plakoglobin seems to be due directly to its interaction with the desmosomal cadherins rather than to its signalling function. The data suggest that the desmosome may obligatorily contain two cadherins and is consistent with a model in which desmocollins and desmogleins may form side by side heterodimers in contrast to the classical cadherins that are homodimeric. Plakoglobin may function by potentiating dimer formation, accretion of dimers to cell-cell contact sites or desmosomal cadherin stability.

1991 ◽  
Vol 114 (5) ◽  
pp. 1059-1068 ◽  
Author(s):  
S M Albelda ◽  
W A Muller ◽  
C A Buck ◽  
P J Newman

PECAM-1 is a 130-120-kD integral membrane glycoprotein found on the surface of platelets, at endothelial intercellular junctions in culture, and on cells of myeloid lineage. Previous studies have shown that it is a member of the immunoglobulin gene superfamily and that antibodies against the bovine form of this protein (endoCAM) can inhibit endothelial cell-cell interactions. These data suggest that PECAM-1 may function as a vascular cell adhesion molecule. The function of this molecule has been further evaluated by transfecting cells with a full-length PECAM-1 cDNA. Transfected COS-7, mouse 3T3 and L cells expressed a 130-120-kD glycoprotein on their cell surface that reacted with anti-PECAM-1 polyclonal and monoclonal antibodies. COS-7 and 3T3 cell transfectants formed cell-cell junctions that were highly enriched in PECAM-1, reminiscent of its distribution at endothelial cell-cell borders. In contrast, this protein remained diffusely distributed within the plasma membrane of PECAM-1 transfected cells that were in contact with mock transfectants. Mouse L cells stably transfected with PECAM-1 demonstrated calcium-dependent aggregation that was inhibited by anti-PECAM antibodies. These results demonstrate that PECAM-1 mediates cell-cell adhesion and support the idea that it may be involved in some of the interactive events taking place during thrombosis, wound healing, and angiogenesis.


2000 ◽  
Vol 113 (10) ◽  
pp. 1803-1811
Author(s):  
Y. Hanakawa ◽  
M. Amagai ◽  
Y. Shirakata ◽  
K. Sayama ◽  
K. Hashimoto

Desmosomes contain two types of cadherin: desmocollin (Dsc) and desmoglein (Dsg). In this study, we examined the different roles that Dsc and Dsg play in the formation of desmosomes, by using dominant-negative mutants. We constructed recombinant adenoviruses (Ad) containing truncated mutants of E-cadherin, desmocollin 3a, and desmoglein 3 lacking a large part of their extracellular domains (EcaddeltaEC, Dsc3adeltaEC, Dsg3deltaEC), using the Cre-loxP Ad system to circumvent the problem of the toxicity of the mutants to virus-producing cells. When Dsc3adeltaEC Ad-infected HaCaT cells were cultured with high levels of calcium, E-cadherin and beta-catenin, which are marker molecules for the adherens junction, disappeared from the cell-cell contact sites, and cell-cell adhesion was disrupted. This also occurred in the cells infected with EcaddeltaEC Ad. With Dsg3deltaEC Ad infection, keratin insertion at the cell-cell contact sites was inhibited and desmoplakin, a marker of desmosomes, was stained in perinuclear dots while the adherens junctions remained intact. Dsc3adeltaEC Ad inhibited the induction of adherens junctions and the subsequent formation of desmosomes with the calcium shift, while Dsg3deltaEC Ad only inhibited the formation of desmosomes. To further determine whether Dsc3adeltaEC directly affected adherens junctions, mouse fibroblast L cells transfected with E-cadherin (LEC5) were infected with these mutant Ads. Both Dsc3adeltaEC and EcaddeltaEC inhibited the cell-cell adhesion of LEC5 cells, as determined by the cell aggregation assay, while Dsg3deltaEC did not. These results indicate that the dominant negative effects of Dsg3deltaEC were restricted to desmosomes, while those of Dsc3adeltaEC were observed in both desmosomes and adherens junctions. Furthermore, the cytoplasmic domain of Dsc3adeltaEC coprecipitated both plakoglobin and beta-catenin in HaCaT cells. In addition, beta-catenin was found to bind the endogenous Dsc in HaCaT cells. These findings lead us to speculate that Dsc interacts with components of the adherens junctions through beta-catenin, and plays a role in nucleating desmosomes after the adherens junctions have been established.


Blood ◽  
1995 ◽  
Vol 86 (5) ◽  
pp. 1861-1872 ◽  
Author(s):  
JM Zapata ◽  
MR Campanero ◽  
M Marazuela ◽  
F Sanchez-Madrid ◽  
MO de Landazuri

Lymphocyte interactions with other leukocytes and other cell types, as well as with components of the extracellular matrix, are one of the key steps in the immune response. Three novel monoclonal antibodies (MoAbs) have been produced and selected for their ability to induce intercellular adhesion in B cells. These three MoAbs immunoprecipitated a polypeptide of 220 kD, displaying specific phosphotyrosine phosphatase activity that has been identified as CD45. These MoAbs recognize epitopes located on the alternative spliced exon-A-encoded region of CD45. These epitopes are of polypeptidic nature, but they can be masked by addition of carbohydrate during CD45 biosynthesis. Interestingly enough, CD45 epitopes recognized by these MoAbs appeared to be selectively expressed on both peripheral blood and tonsillar B lymphocytes as well as on peripheral blood natural killer (NK) cells. CD45-mediated intercellular adhesion was abrogated upon incubation with anti-leukocyte function-associated antigen 1 (anti-LFA-1), intercellular cell adhesion molecule 1 (ICAM-1), and ICAM-3 MoAbs, thus indicating that this phenomenon involved both LFA-1/ICAM-1 and LFA- 1/ICAM-3 cell adhesion pathways. Moreover, CD45-mediated cell aggregation was also inhibited by preincubation with some conventional anti-CD45 MoAbs. Interestingly, the triggering of cell aggregation through CD45 induced membrane surface relocation of CD45 and LFA-1 molecules, with both of them colocalizing at cell-cell contact areas of B-cell aggregates. Studies with inhibitors of both phosphotyrosine phosphatase and tyrosine kinase activities suggest that CD45 phosphotyrosine phosphatase activity could be involved in CD45-mediated cell aggregation. Taken together, these results support the notion that CD45 is a key molecule in the regulation of LFA-1-mediated cell-cell interactions.


1998 ◽  
Vol 142 (1) ◽  
pp. 251-261 ◽  
Author(s):  
Michael Hortsch ◽  
Diahann Homer ◽  
Jyoti Dhar Malhotra ◽  
Sherry Chang ◽  
Jason Frankel ◽  
...  

Expression of the Drosophila cell adhesion molecule neuroglian in S2 cells leads to cell aggregation and the intracellular recruitment of ankyrin to cell contact sites. We localized the region of neuroglian that interacts with ankyrin and investigated the mechanism that limits this interaction to cell contact sites. Yeast two-hybrid analysis and expression of neuroglian deletion constructs in S2 cells identified a conserved 36-amino acid sequence that is required for ankyrin binding. Mutation of a conserved tyrosine residue within this region reduced ankyrin binding and extracellular adhesion. However, residual recruitment of ankyrin by this mutant neuroglian molecule was still limited to cell contacts, indicating that the lack of ankyrin binding at noncontact sites is not caused by tyrosine phosphorylation. A chimeric molecule, in which the extracellular domain of neuroglian was replaced with the corresponding domain from the adhesion molecule fasciclin II, also selectively recruited ankyrin to cell contacts. Thus, outside-in signaling by neuroglian in S2 cells depends on extracellular adhesion, but does not depend on any unique property of its extracellular domain. We propose that the recruitment of ankyrin to cell contact sites depends on a physical rearrangement of neuroglian in response to cell adhesion, and that ankyrin binding plays a reciprocal role in stabilizing the adhesive interaction.


2011 ◽  
Vol 435 (3) ◽  
pp. 619-628 ◽  
Author(s):  
Eija Heikkilä ◽  
Mervi Ristola ◽  
Marika Havana ◽  
Nina Jones ◽  
Harry Holthöfer ◽  
...  

Slit diaphragms are specialized junctions between glomerular epithelial cells (podocytes) that are crucial for glomerular ultrafiltration. The Ig superfamily members nephrin and Neph1 are essential components of the slit diaphragm, whereas the role of Neph1 homologue Neph3 in the slit diaphragm is unknown. In the present paper we show that Neph3 homodimerizes and heterodimerizes with nephrin and Neph1. We further investigated whether these interactions play a role in cell adhesion by using mouse L fibroblasts that lack endogenous cell-adhesion activity and found that Neph1 and Neph3 are able to induce cell adhesion alone, whereas nephrin needs to trans-interact with Neph1 or Neph3 in order to promote formation of cell–cell contacts. Tyrosine phosphorylation of nephrin was down-regulated after nephrin trans-interacted with either Neph1 or Neph3 leading to formation of cell–cell contacts. We further found that the expression of Neph3 was increased in nephrin-deficient mouse podocytes. The findings of the present paper show that nephrin and Neph1 or Neph3 trans-interactions promote cell-contact formation, suggesting that they may also function together in slit diaphragm assembly.


2004 ◽  
Vol 15 (3) ◽  
pp. 1172-1184 ◽  
Author(s):  
Takahiko Hara ◽  
Hiroshi Ishida ◽  
Razi Raziuddin ◽  
Stephan Dorkhom ◽  
Keiju Kamijo ◽  
...  

Dynamic rearrangements of cell-cell adhesion underlie a diverse range of physiological processes, but their precise molecular mechanisms are still obscure. Thus, identification of novel players that are involved in cell-cell adhesion would be important. We isolated a human kelch-related protein, Kelch-like ECT2 interacting protein (KLEIP), which contains the broad-complex, tramtrack, bric-a-brac (BTB)/poxvirus, zinc finger (POZ) motif and six-tandem kelch repeats. KLEIP interacted with F-actin and was concentrated at cell-cell contact sites of Madin-Darby canine kidney cells, where it colocalized with F-actin. Interestingly, this localization took place transiently during the induction of cell-cell contact and was not seen at mature junctions. KLEIP recruitment and actin assembly were induced around E-cadherin–coated beads placed on cell surfaces. The actin depolymerizing agent cytochalasin B inhibited this KLEIP recruitment around E-cadherin–coated beads. Moreover, constitutively active Rac1 enhanced the recruitment of KLEIP as well as F-actin to the adhesion sites. These observations strongly suggest that KLEIP is localized on actin filaments at the contact sites. We also found that N-terminal half of KLEIP, which lacks the actin-binding site and contains the sufficient sequence for the localization at the cell-cell contact sites, inhibited constitutively active Rac1-induced actin assembly at the contact sites. We propose that KLEIP is involved in Rac1-induced actin organization during cell-cell contact in Madin-Darby canine kidney cells.


2008 ◽  
Vol 294 (6) ◽  
pp. R1856-R1862 ◽  
Author(s):  
Linning Zhao ◽  
Eishin Yaoita ◽  
Masaaki Nameta ◽  
Ying Zhang ◽  
Lino Munoz Cuellar ◽  
...  

Tight junctions rarely exist in podocytes of the normal renal glomerulus, whereas they are the main intercellular junctions of podocytes in nephrosis and in the early stage of development. Claudins have been identified as tight junction-specific integral membrane proteins. Those of podocytes, however, remain to be elucidated. In the present study, we investigated the expression and localization of claudin-6 in the rat kidney, especially in podocytes. Western blot analysis and RT-PCR revealed that the neonatal kidney expressed much higher levels of claudin-6 than the adult kidney. Immunofluorescence microscopy showed intense claudin-6 staining in most of the tubules and glomeruli in neonates. The staining in tubules declined distinctly in adults, whereas staining in glomeruli was well preserved during development. Claudin-6 in glomeruli was distributed along the glomerular capillary wall and colocalized with zonula occludens-1. The staining became conspicuous after kidney perfusion with protamine sulfate (PS) to increase tight junctions in podocytes. Immunoelectron microscopy showed that immunogold particles for claudin-6 were accumulated at close cell-cell contact sites of podocytes in PS-perfused kidneys, whereas a very limited number of immunogold particles were detected, mainly on the basal cell membrane and occasionally at the slit diaphragm and close cell-cell contact sites in normal control kidneys. In puromycin aminonucleoside nephrosis, immunogold particles were also found mainly at cell-contact sites of podocytes. These findings indicate that claudin-6 is a transmembrane protein of tight junctions in podocytes during development and under pathological conditions.


1993 ◽  
Vol 121 (5) ◽  
pp. 1133-1140 ◽  
Author(s):  
H Oda ◽  
T Uemura ◽  
K Shiomi ◽  
A Nagafuchi ◽  
S Tsukita ◽  
...  

The cadherin cell adhesion system plays a central role in cell-cell adhesion in vertebrates, but its homologues are not identified in the invertebrate. alpha-Catenins are a group of proteins associated with cadherins, and this association is crucial for the cadherins' function. Here, we report the cloning of a Drosophila alpha-catenin gene by low stringent hybridization with a mouse alpha E-catenin probe. Isolated cDNAs encoded a 110-kD protein with 60% identity to mouse alpha E-catenin, and this protein was termed D alpha-catenin. The gene of this protein was located at the chromosome band 80B. Immunostaining analysis using a mAb to D alpha-catenin revealed that it was localized to cell-cell contact sites, expressed throughout development and present in a wide variety of tissues. When this protein was immunoprecipitated from detergent extracts of Drosophila embryos or cell lines, several proteins co-precipitated. These included the armadillo product which was known to be a Drosophila homologue of beta-catenin, another cadherin-associated protein in vertebrates, and a 150-kD glycoprotein. These results strongly suggest that Drosophila has a cell adhesion machinery homologous to the vertebrate cadherin-catenin system.


1995 ◽  
Vol 108 (12) ◽  
pp. 3765-3773 ◽  
Author(s):  
S. Obata ◽  
H. Sago ◽  
N. Mori ◽  
J.M. Rochelle ◽  
M.F. Seldin ◽  
...  

Cell adhesion and several other properties of a recently identified cadherin-related protein, protocadherin Pcdh2, were characterized. A chimeric Pcdh2 in which the original cytoplasmic domain was replaced with the cytoplasmic domain of E-cadherin was expressed in mouse L cells. The expressed protein had a molecular mass of about 150 kDa and was localized predominantly at the cell periphery, as was the wild-type Pcdh2. In a conventional cell aggregation assay, the transfectants showed cell aggregation activity comparable to that of classical cadherins. This activity was Ca(2+)-dependent and was inhibited by the addition of anti-Pcdh2 antibody, indicating that the chimeric Pcdh2, and probably the wild-type Pcdh2, has Ca(2+)-dependent cell aggregation activity. Mixed cell aggregation assay using L cells and different types of transfectants showed that the activity of Pcdh2 was homophilic and molecular type specific and that Pcdh2 was transfectants did not aggregate with other types of transfectants or with L cells. In immunoprecipitation, the chimeric Pcdh2 co-precipitated with a 105 kDa and a 95 kDa protein, whereas wild-type Pcdh2 co-precipitated with no major protein. Pcdh2 was easily solubilized with non-ionic detergent, in contrast to the case of classical cadherins. On immunofluorescence microscopy, the somas of Purkinje cells were diffusely stained with anti-human Pcdh2 antibody. Mouse Pcdh1 and Pcdh2 were mapped to a small segment of chromosome 18, suggesting that various protocadherins form a gene cluster at this region. The present results suggest that Pcdh2, and possibly other protocadherins as well as protocadherin-related proteins such as Drosophila fat, mediate Ca(2+)-dependent and specific homophilic cell-cell interaction in vivo and play an important role in cell adhesion, cell recognition, and/or some other basic cell processes.


2015 ◽  
Vol 26 (3) ◽  
pp. 467-477 ◽  
Author(s):  
Timothy J. Gauvin ◽  
Lorna E. Young ◽  
Henry N. Higgs

FMNL3 is a vertebrate-specific formin protein previously shown to play a role in angiogenesis and cell migration. Here we define the cellular localization of endogenous FMNL3, the dynamics of GFP-tagged FMNL3 during cell migration, and the effects of FMNL3 suppression in mammalian culture cells. The majority of FMNL3 localizes in a punctate pattern, with >95% of these puncta being indistinguishable from the plasma membrane by fluorescence microscopy. A small number of dynamic cytoplasmic FMNL3 patches also exist, which enrich near cell–cell contact sites and fuse with the plasma membrane at these sites. These cytoplasmic puncta appear to be part of larger membranes of endocytic origin. On the plasma membrane, FMNL3 enriches particularly in filopodia and membrane ruffles and at nascent cell–cell adhesions. FMNL3-containing filopodia occur both at the cell–substratum interface and at cell–cell contacts, with the latter being 10-fold more stable. FMNL3 suppression by siRNA has two major effects: decrease in filopodia and compromised cell–cell adhesion in cells migrating as a sheet. Overall our results suggest that FMNL3 functions in assembly of actin-based protrusions that are specialized for cell–cell adhesion.


Sign in / Sign up

Export Citation Format

Share Document