Role of lipid rafts in Shiga toxin 1 interaction with the apical surface of Caco-2 cells

2001 ◽  
Vol 114 (22) ◽  
pp. 4025-4031
Author(s):  
Olga Kovbasnjuk ◽  
Michael Edidin ◽  
Mark Donowitz

Enterohemorrhagic Escherichia coli producing Shiga toxins 1 and/or 2 have become major foodborne pathogens. The specific binding of Shiga toxin 1 B-subunit to its receptor, a neutral glycolipid globotriaosylceramide Gb3, on the apical surface of colonic epithelium followed by toxin entry into cells are the initial steps of the process, which can result in toxin transcytosis and systemic effects of infection including hemolytic uremic syndrome. Understanding the complex mechanisms of Shiga toxin 1 binding and internalization may help to develop new strategies directed at preventing toxin internalization. Fluorescence resonance energy transfer microscopy revealed the clustering of Shiga toxin receptors Gb3 in lipid rafts with another glycosphingolipid GM1 on the apical surface of highly polarized intestinal epithelial Caco-2 cells. Lipid rafts disruption significantly decreased internalization of Shiga toxin 1 B-subunit. Although disruption of lipid rafts by cholesterol depletion did not affect the amount of bound Shiga toxin 1 B-subunit, lipid rafts are necessary for toxin uptake across the apical membrane of Caco-2 cells.

1998 ◽  
Vol 142 (1) ◽  
pp. 69-84 ◽  
Author(s):  
A.K. Kenworthy ◽  
M. Edidin

Membrane microdomains (“lipid rafts”) enriched in glycosylphosphatidylinositol (GPI)-anchored proteins, glycosphingolipids, and cholesterol have been implicated in events ranging from membrane trafficking to signal transduction. Although there is biochemical evidence for such membrane microdomains, they have not been visualized by light or electron microscopy. To probe for microdomains enriched in GPI- anchored proteins in intact cell membranes, we used a novel form of digital microscopy, imaging fluorescence resonance energy transfer (FRET), which extends the resolution of fluorescence microscopy to the molecular level (<100 Å). We detected significant energy transfer between donor- and acceptor-labeled antibodies against the GPI-anchored protein 5′ nucleotidase (5′ NT) at the apical membrane of MDCK cells. The efficiency of energy transfer correlated strongly with the surface density of the acceptor-labeled antibody. The FRET data conformed to theoretical predictions for two-dimensional FRET between randomly distributed molecules and were inconsistent with a model in which 5′ NT is constitutively clustered. Though we cannot completely exclude the possibility that some 5′ NT is in clusters, the data imply that most 5′ NT molecules are randomly distributed across the apical surface of MDCK cells. These findings constrain current models for lipid rafts and the membrane organization of GPI-anchored proteins.


2008 ◽  
Vol 19 (10) ◽  
pp. 4366-4373 ◽  
Author(s):  
Xinxin Gao ◽  
Jin Zhang

As a central kinase in the phosphatidylinositol 3-kinase pathway, Akt has been the subject of extensive research; yet, spatiotemporal regulation of Akt in different membrane microdomains remains largely unknown. To examine dynamic Akt activity in membrane microdomains in living cells, we developed a specific and sensitive fluorescence resonance energy transfer-based Akt activity reporter, AktAR, through systematic testing of different substrates and fluorescent proteins. Targeted AktAR reported higher Akt activity with faster activation kinetics within lipid rafts compared with nonraft regions of plasma membrane. Disruption of rafts attenuated platelet-derived growth factor (PDGF)-stimulated Akt activity in rafts without affecting that in nonraft regions. However, in insulin-like growth factor-1 (IGF)-1 stimulation, Akt signaling in nonraft regions is dependent on that in raft regions. As a result, cholesterol depletion diminishes Akt activity in both regions. Thus, Akt activities are differentially regulated in different membrane microdomains, and the overall activity of this oncogenic pathway is dependent on raft function. Given the increased abundance of lipid rafts in some cancer cells, the distinct Akt-activating characteristics of PDGF and IGF-1, in terms of both effectiveness and raft dependence, demonstrate the capabilities of different growth factor signaling pathways to transduce differential oncogenic signals across plasma membrane.


2017 ◽  
Vol 474 (24) ◽  
pp. 4075-4090 ◽  
Author(s):  
Simona Paladino ◽  
Stéphanie Lebreton ◽  
Mickaël Lelek ◽  
Patrizia Riccio ◽  
Sergio De Nicola ◽  
...  

Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model.


2011 ◽  
Vol 301 (3) ◽  
pp. C646-C652 ◽  
Author(s):  
Jason Rahimzadeh ◽  
Fanjie Meng ◽  
Fredrick Sachs ◽  
Jianbin Wang ◽  
Deepika Verma ◽  
...  

The mechanical stress due to shear flow has profound effects on cell proliferation, transport, gene expression, and apoptosis. The mechanisms for flow sensing and transduction are unclear, but it is postulated that fluid flow pulls upon the apical surface, and the resulting stress is eventually transmitted through the cytoskeleton to adhesion plaques on the basal surface. Here we report a direct observation of this flow-induced stress in the cytoskeleton in living cells using a parallel plate microfluidic chip with a fluorescence resonance energy transfer (FRET)-based mechanical stress sensor in actinin. The sensing cassette was genetically inserted into the cytoskeletal host protein and transfected into Madin-Darby canine kidney cells. A shear stress of 10 dyn/cm2 resulted in a rapid increase in the FRET ratio indicating a decrease in stress across actinin with flow. The effect was reversible, and cells were able to respond to repeated stimulation and showed adaptive changes in the cytoskeleton. Flow-induced Ca2+ elevation did not affect the response, suggesting that flow-induced changes in actinin stress are insensitive to intracellular Ca2+ level. The reduction in FRET ratio suggests actin filaments are under normal compression in the presence of flow shear stress due to changes in cell shape, and/or actinin is not in series with actin. Treatment with cytochalasin-D that disrupts F-actin reduced prestress and the response to flow. The FRET/flow method is capable of resolving changes of stress in multiple proteins with optical spatial resolution and time resolution >1 Hz. This promises to provide insight into the force distribution and transduction in all cells.


2010 ◽  
Vol 15 (10) ◽  
pp. 1281-1286 ◽  
Author(s):  
Imanol Peña ◽  
Juan Manuel Domínguez

The use of thermally denatured bovine serum albumin (tdBSA) as an additive in high-throughput screening (HTS) buffers has been studied with the aim of finding a surrogate to native albumin devoid of its inconveniences, in particular its compound masking effect. The presence of aggregates in the thermally denatured material did not have any negative impact on common readout technologies used in HTS such as fluorescence intensity (FLINT), fluorescence polarization, time-resolved fluorescence resonance energy transfer (TR-FRET) and luminescence. tdBSA rendered the same beneficial effects as native albumin in several assays or even improved its performance due to the lack of specific binding properties. Although tdBSA still binds compounds nonspecifically as any other protein does, it mitigates the compound masking effect observed with native albumin and can be postulated as a convenient surrogate to BSA for HTS purposes.


2021 ◽  
Vol 134 (6) ◽  
Author(s):  
Eric Cortada ◽  
Robert Serradesanferm ◽  
Ramon Brugada ◽  
Marcel Verges

ABSTRACT The voltage-gated sodium channel is critical for cardiomyocyte function. It consists of a protein complex comprising a pore-forming α subunit and associated β subunits. In polarized Madin–Darby canine kidney cells, we show evidence by acyl-biotin exchange that β2 is S-acylated at Cys-182. Interestingly, we found that palmitoylation increases β2 association with detergent-resistant membranes. β2 localizes exclusively to the apical surface. However, depletion of plasma membrane cholesterol, or blocking intracellular cholesterol transport, caused mislocalization of β2, as well as of the non-palmitoylable C182S mutant, to the basolateral domain. Apical β2 did not undergo endocytosis and displayed limited diffusion within the plane of the membrane; such behavior suggests that, at least in part, it is cytoskeleton anchored. Upon acute cholesterol depletion, its mobility was greatly reduced, and a slight reduction was also measured as a result of lack of palmitoylation, supporting β2 association with cholesterol-rich lipid rafts. Indeed, lipid raft labeling confirmed a partial overlap with apical β2. Although β2 palmitoylation was not required to promote surface localization of the α subunit, our data suggest that it is likely implicated in lipid raft association and the polarized localization of β2.


1993 ◽  
Vol 120 (2) ◽  
pp. 353-358 ◽  
Author(s):  
L A Hannan ◽  
M P Lisanti ◽  
E Rodriguez-Boulan ◽  
M Edidin

Glycosyl-phosphatidylinositol (GPI)-anchored proteins are sorted to the apical surface of many epithelial cell types. To better understand the mechanism for apical segregation of these proteins, we analyzed the lateral mobility and molecular associations of a model GPI-anchored protein, herpes simplex virus gD1 fused to human decay accelerating factor (gD1-DAF) (Lisanti, M. P., I. W. Caras, M. A. Davitz, and E. Rodriguez-Boulan. 1989. J. Cell Biol. 109:2145-2156) shortly after arrival and after long-term residence at the surface of confluent, polarized MDCK cells. FRAP measurements of lateral diffusion showed that the mobile fraction of newly arrived gD1-DAF molecules was much less than the mobile fraction of long-term resident molecules (40 vs. 80-90%). Fluorescence resonance energy transfer measurements showed that the newly arrived molecules were clustered, while resident molecules were not. Newly delivered gD1-DAF molecules were clustered but not immobilized in mutant, Concanavalin A-resistant MDCK cells that failed to sort gD1-DAF. Our results indicate that GPI-anchored proteins in MDCK cells are clustered before delivery to the surface. However, clustering alone does not target molecules for apical delivery. The immobilization observed when gD1-DAF is correctly sorted suggests that the clusters must associate some component of the cell's cytoplasm.


2021 ◽  
Vol 22 (20) ◽  
pp. 11230
Author(s):  
Yan Wang ◽  
Ronald M. P. Breedijk ◽  
Mark A. Hink ◽  
Lars Bults ◽  
Norbert O. E. Vischer ◽  
...  

Spores of the bacterium Bacillus cereus can cause disease in humans due to contamination of raw materials for food manufacturing. These dormant, resistant spores can survive for years in the environment, but can germinate and grow when their surroundings become suitable, and spore germination proteins play an important role in the decision to germinate. Since germinated spores have lost dormant spores’ extreme resistance, knowledge about the formation and function of germination proteins could be useful in suggesting new preservation strategies to control B. cereus spores. In this study, we confirmed that the GerR germinant receptor’s (GR) A, B, and C subunits and GerD co-localize in B. cereus spore inner membrane (IM) foci termed germinosomes. The interaction between these proteins was examined by using fusions to the fluorescent reporter proteins SGFP2 and mScarlet-I and Förster Resonance Energy Transfer (FRET). This work found that the FRET efficiency was 6% between GerR(A-C-B)–SGFP2 and GerD–mScarlet-I, but there was no FRET between GerD–mScarlet-I and either GerRA–SGFP2 or GerRC–SGFP2. These results and that GerD does not interact with a GR C-subunit in vitro suggest that, in the germinosome, GerD interacts primarily with the GR B subunit. The dynamics of formation of germinosomes with GerR(A-C-B)–SGFP2 and GerD–mScarlet-I was also followed during sporulation. Our results showed heterogeneity in the formation of FRET positive foci of GerR(A-C-B)–SGFP2 and GerD–mScarlet-I; and while some foci formed at the same time, the formation of foci in the FRET channel could be significantly delayed. The latter finding suggests that either the GerR GR can at least transiently form IM foci in the absence of GerD, or that, while GerD is essential for GerR foci formation, the time to attain the final germinosome structure with close contacts between GerD and GerR can be heterogeneous.


2007 ◽  
Vol 75 (5) ◽  
pp. 2189-2200 ◽  
Author(s):  
Takeshi Shimizu ◽  
Satomi Kawakami ◽  
Toshio Sato ◽  
Terumi Sasaki ◽  
Masato Higashide ◽  
...  

ABSTRACT Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) include Shiga toxin 1 (Stx1) as well as Shiga toxin 2 (Stx2). Stx1 is cell associated, whereas Stx2 is localized to the culture supernatant. We have analyzed the secretion of Stx2 by generating histidine-tagged StxB (StxB-H). Although neither StxB1-H nor StxB2-H was secreted in StxB-H-overexpressed EHEC, StxB2-H-overexpressed EHEC showed inhibited Stx2 secretion. On the other hand, StxB1-H-overexpressed EHEC showed no alteration of Stx2 secretion. B-subunit chimeras of Stx1 and Stx2 were used to identify the specific residue of StxB2 that the Stx2 secretory system recognizes. Alteration of the serine 31 residue to an asparagine residue (S31N) in StxB2-H enabled the recovery of Stx2 secretion. On the other hand, alteration of the asparagine 32 residue to a serine residue (N32S) in StxB1-H caused the partial secretion of a point-mutated histidine-tagged B subunit in EHEC. Based on the evidence, it appeared possible that this residue might contain secretion-related information for Stx2 secretion. To investigate this hypothesis, we constructed an isogenic mutant EHEC (Stx1B subunit, N32S) strain and an isogenic mutant EHEC (Stx2B subunit, S31N) strain. Although the mutant Stx2 was cell associated in isogenic mutant EHEC, mutant Stx1 was not extracellular. However, when we used plasmids for the expression of the mutant holotoxins, the overexpressed mutant Stx1 was found in the supernatant fraction, and the overexpressed mutant Stx2 was found in the cell-associated fraction in mutant holotoxin gene-transformed EHEC. These results indicate that the serine 31 residue of the B subunit of Stx2 contains secretion-related information.


Sign in / Sign up

Export Citation Format

Share Document