Cas, Fak and Pyk2 function in diverse signaling cascades to promote Yersinia uptake

2002 ◽  
Vol 115 (13) ◽  
pp. 2689-2700 ◽  
Author(s):  
Pamela J. Bruce-Staskal ◽  
Cheryl L. Weidow ◽  
Jennifer J. Gibson ◽  
Amy H. Bouton

The interplay between pathogen-encoded virulence factors and host cell signaling networks is critical for both the establishment and clearance of microbial infections. Yersinia uptake into host cells serves as an in vitro model for exploring how host cells respond to Yersinia adherence. In this study, we provide insight into the molecular nature and regulation of signaling networks that contribute to the uptake process. Using a reconstitution approach in Fak-/- fibroblasts, we have been able to specifically address the interplay between Fak, Cas and Pyk2 in this process. We show that both Fak and Cas play roles in the Yersinia uptake process and that Cas can function in a novel pathway that is independent of Fak. Fak-dependent Yersinia uptake does not appear to involve Cas-Crk signaling. By contrast, Cas-mediated uptake in the absence of Fak requires Crk as well as the protein tyrosine kinases Pyk2 and Src. In spite of these differences, the requirement for Rac1 activity is a common feature of both pathways. Furthermore, blocking the function of either Fak or Cas induces similar morphological defects in Yersinia internalization, which are manifested by incomplete membrane protrusive activity that is consistent with an inhibition of Rac1 activity. Pyk2 also functions in Yersinia uptake by macrophages, which are physiologically important for clearing Yersinia infections. Taken together, these data provide new insight into the host cellular signaling networks that are initiated upon infection with Y. pseudotuberculosis. Importantly, these findings also contribute to a better understanding of other cellular processes that involve actin remodeling, including the host response to other microbial pathogens, cell adhesion and migration.

Author(s):  
Allison H. Bartlett ◽  
Pyong Woo Park

Many microbial pathogens subvert proteoglycans for their adhesion to host tissues, invasion of host cells, infection of neighbouring cells, dissemination into the systemic circulation, and evasion of host defence mechanisms. Where studied, specific virulence factors mediate these proteoglycan–pathogen interactions, which are thus thought to affect the onset, progression and outcome of infection. Proteoglycans are composites of glycosaminoglycan (GAG) chains attached covalently to specific core proteins. Proteoglycans are expressed ubiquitously on the cell surface, in intracellular compartments, and in the extracellular matrix. GAGs mediate the majority of ligand-binding activities of proteoglycans, and many microbial pathogens elaborate cell-surface and secreted factors that interact with GAGs. Some pathogens also modulate the expression and function of proteoglycans through known virulence factors. Several GAG-binding pathogens can no longer attach to and invade host cells whose GAG expression has been reduced by mutagenesis or enzymatic treatment. Furthermore, GAG antagonists have been shown to inhibit microbial attachment and host cell entry in vitro and reduce virulence in vivo. Together, these observations underscore the biological significance of proteoglycan–pathogen interactions in infectious diseases.


2017 ◽  
Vol 30 (3) ◽  
pp. 205-214 ◽  
Author(s):  
Hay Anne-Emmanuelle ◽  
Boubakri Hasna ◽  
Buonomo Antoine ◽  
Rey Marjolaine ◽  
Meiffren Guillaume ◽  
...  

A unique case of microbial symbiont capable of dormancy within its living host cells has been reported in actinorhizal symbioses. Some Frankia strains, named Sp+, are able to sporulate inside plant cells, contrarily to Sp− strains. The presence of metabolically slowed-down bacterial structures in host cells alters our understanding of symbiosis based on reciprocal benefits between both partners, and its impact on the symbiotic processes remains unknown. The present work reports a metabolomic study of Sp+ and Sp− nodules (from Alnus glutinosa), in order to highlight variabilities associated with in-planta sporulation. A total of 21 amino acids, 44 sugars and organic acids, and 213 secondary metabolites were detected using UV and mass spectrometric–based profiling. Little change was observed in primary metabolites, suggesting that in-planta sporulation would not strongly affect the primary functionalities of the symbiosis. One secondary metabolite (M27) was detected only in Sp+ nodules. It was identified as gentisic acid 5-O-β-d-xylopyranoside, previously reported as involved in plant defenses against microbial pathogens. This metabolite significantly increased Frankia in-vitro sporulation, unlike another metabolite significantly more abundant in Sp− nodules [M168 = (5R)-1,7-bis-(3,4-dihydroxyphenyl)-heptane-5-O-β-d-glucopyranoside]. All these results suggest that the plant could play an important role in the Frankia ability to sporulate in planta and allow us to discuss a possible sanction emitted by the host against less cooperative Sp+ symbionts.


1999 ◽  
Vol 67 (5) ◽  
pp. 2575-2584 ◽  
Author(s):  
John K. Crane ◽  
Swastika Majumdar ◽  
Donald F. Pickhardt

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is a cause of prolonged watery diarrhea in children in developing countries. The ability of EPEC to kill host cells was investigated in vitro in assays using two human cultured cell lines, HeLa (cervical) and T84 (colonic). EPEC killed epithelial cells as assessed by permeability to the vital dyes trypan blue and propidium iodide. In addition, EPEC triggered changes in the host cell, suggesting apoptosis as the mode of death; such changes included early expression of phosphatidylserine on the host cell surface and internucleosomal cleavage of host cell DNA. Genistein, an inhibitor of tyrosine kinases, and wortmannin, an inhibitor of host phosphatidylinositol 3-kinase, markedly increased EPEC-induced cell death and enhanced the features of apoptosis. EPEC-induced cell death was contact dependent and required adherence of live bacteria to the host cell. A quantitative assay for EPEC-induced cell death was developed by using the propidium iodide uptake method adapted to a fluorescence plate reader. With EPEC, the rate and extent of host cell death were less that what has been reported forSalmonella, Shigella, and Yersinia, three other genera of enteric bacteria known to cause apoptosis. However, rapid apoptosis of the host cell may not favor the pathogenic strategy of EPEC, a mucosa-adhering, noninvasive pathogen.


1999 ◽  
Vol 82 (08) ◽  
pp. 298-304 ◽  
Author(s):  
Francesco Blasi

IntroductionHigh levels of urokinase-type plasminogen activator (u-PA), of its inhibitor (plasminogen activator inhibitor (PAI)-1), or of its receptor (u-PAR, CD87) are strong prognostic indicators of relapse in human cancers. In addition, many in vitro data show that u-PA, PAI-1, and u-PAR have a profound influence on cell migration. This set of molecules regulates surface proteolysis, cell adhesion, and chemotaxis through different mechanisms. Binding to u-PAR strongly stimulates the activation of pro-u-PA and, hence, of plasminogen, resulting in localized production of the broad-spectrum serine protease, plasmin, which can digest extracellular matrix proteins or activate latent motogenic factors. Chemotaxis is induced through an u-PA-dependent conformational change in u-PAR, which uncovers a very potent chemotactic epitope(s) that acts through a pertussis toxin-sensitive step and activates intracellular tyrosine kinases. In addition, cell adhesion is affected by an u-PA-dependent exposure of u-PAR epitope(s), which interact with vitronectin (VN), integrins, and caveolin, thus modifying the substrate specificity. Thus, u-PA binding can transform u-PAR from a simple receptor for u-PA into a pleiotropic ligand for other surface molecules.All of these processes are regulated by the u-PA inhibitor, PAI-1. Inhibition of cell adhesion and migration by PAI-1 on VN occurs because the same region of VN is required for interaction with PAI-1, u-PAR, and integrins. PAI-1, however, also affects u-PAR occupancy by triggering the internalization of the u-PA-u-PAR complex, the degradation of u-PA, and the recycling of free u-PAR. Available data suggest that cells respond to a “stop” signal, due to the PAI-1-dependent internalization and degradation of u-PA. Cells also respond to a “go” signal through the stimulation of surface-proteolysis, exposure of chemotactic epitopes, and recycling of u-PAR to novel surface positions. Finally, cells respond to a “pause” signal through transient u-PAR-dependent adhesion stages, thus shifting the cells between an “adhesion-mode” and a “migration-mode.”


2005 ◽  
Vol 21 (2) ◽  
pp. 152-160 ◽  
Author(s):  
Andrei I. Ivanov ◽  
Alexandre A. Steiner ◽  
Adrienne C. Scheck ◽  
Andrej A. Romanovsky

Erythropoietin-producing hepatocellular (Eph) receptor tyrosine kinases and their ligands, ephrins, are involved in embryogenesis and oncogenesis by mediating cell adhesion and migration. Although ephrins can be induced by bacterial LPS in vitro, whether they are involved in inflammation in vivo is unknown. Using differential mRNA display, we found that a febrigenic dose of LPS (50 μg/kg iv) induces a strong transcriptional upregulation of ephrin-A1 in rat liver. We confirmed this finding by real-time RT-PCR. We then quantified the mRNA expression of different ephrins and Eph receptors at phases 1–3 of LPS fever in different organs. Febrile phases 2 (90 min post-LPS) and 3 (300 min) were characterized by robust upregulation (up to 16-fold) and downregulation (up to 21-fold) of several ephrins and Eph receptors. With the exception of EphA2, which showed upregulation in the brain at phase 2, expressional changes of Eph receptors and ephrins were limited to the LPS-processing organs: liver and lung. Characteristic, counter-directed changes in expressional regulation of Eph receptors and their corresponding ligands were found: upregulation of EphA2, downregulation of ephrin-A1 in the liver and lung at phase 2; downregulation of EphB3, upregulation of ephrin-B2 in the liver at phase 2; downregulation of EphA1 and EphA3, upregulation of ephrins-A1 and -A3 in liver at phase 3. In the liver, transcriptional changes of EphA2 and EphB3 at phase 2 were confirmed at protein level. These coordinated, phase-specific responses suggest that different sets of ephrins and Eph receptors may be involved in cellular events (such as disruption of tissue barriers and leukocyte transmigration) underlying different stages of systemic inflammatory response to LPS.


2016 ◽  
Vol 90 (24) ◽  
pp. 11020-11031 ◽  
Author(s):  
Jayashree A. Chandrasekharan ◽  
Xiao M. Huang ◽  
Alexander C. Hwang ◽  
Neelam Sharma-Walia

ABSTRACTLipoxins are host anti-inflammatory molecules that play a vital role in restoring tissue homeostasis. The efficacy of lipoxins and their analog epilipoxins in treating inflammation and its associated diseases has been well documented. Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL) are two well-known inflammation related diseases caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Controlling inflammation is one of the strategies adopted to treat KS and PEL, a primary motivation for exploring and evaluating the therapeutic potential of using lipoxins. This study documents how KSHV manipulates and downregulates the secretion of the anti-inflammatory lipoxin A4 in host cells and the viral factors involved in this process usingin vitroKS and PEL cells as models. The presence of the lipoxin A4 receptor/formyl peptidyl receptor (ALX/FPR) in KS patient tissue sections andin vitroKS and PEL cell models offers a novel possibility for treating KS and PEL with lipoxins. Treatingde novoKSHV-infected endothelial cells with lipoxin and epilipoxin creates an anti-inflammatory environment by decreasing the levels of NF-κB, AKT, ERK1/2, COX-2, and 5-lipoxygenase. Lipoxin treatment on CRISPR/CAS9 technology-mediated ALX/FPR gene deletion revealed the importance of the lipoxin receptor ALX for effective lipoxin signaling. A viral microRNA (miRNA) cluster was identified as the primary factor contributing to the downregulation of lipoxin A4 secretion in host cells. The KSHV miRNA cluster probably targets enzyme 15-lipoxygenase, which is involved in lipoxin A4 synthesis. This study provides a new insight into the potential treatment of KS and PEL using nature's own anti-inflammatory molecule, lipoxin.IMPORTANCEKSHV infection has been shown to upregulate several host proinflammatory factors, which aid in its survival and pathogenesis. The influence of KSHV infection on anti-inflammatory molecules is not well studied. Since current treatment methods for KS and PEL are fraught with unwanted side effects and low efficiency, the search for new therapeutics is therefore imperative. The use of nature's own molecule lipoxin as a drug is promising. This study opens up new domains in KSHV research focusing on how the virus modulates lipoxin secretion and warrants further investigation of the therapeutic potential of lipoxin usingin vitrocell models for KS and PEL.


2013 ◽  
Vol 110 (11) ◽  
pp. 1046-1054 ◽  
Author(s):  
Norbert Schütze ◽  
Eva Jüngel ◽  
Roman Blaheta ◽  
Annamaria Naggi ◽  
Giangiacomo Torri ◽  
...  

SummaryThe integrin VLA-4 is important for the metastatic dissemination of melanoma cells. We could recently show that heparin can block VLA-4 binding, which contributes, next to blocking P-and L-selectin, to the understanding of antimetastatic activities of heparin. The matricellular ligand Cyr61, secreted by numerous tumours, is responsible for increased tumourigenicity and metastasis. This has been attributed to Cyr61 binding to, and thus activating integrins. However, a VLA-4/Cyr61 axis has not yet been reported. Since Cyr61 possesses heparin binding capabilities, Cyr61 can be supposed as potential target for heparin to indirectly interfere with integrin functions. The present in vitro studies address (i) the existence of a Cyr61/VLA-4 axis and (ii) the functional relevance of heparin interference via Cyr61. The C-terminal module III of Cyr61 could be exposed as nanomolar affine binding site for VLA-4. A shRNA-based knockdown of Cyr61 in MV3 human melanoma cells reduced VLA-4-mediated cell binding to VCAM-1, migration on fibronectin, and integrin signalling functions significantly. Using a biosensor approach we provide insight into heparin interference with this process. The low-molecular-weight heparin tinzaparin, but not the pentasaccharide fondaparinux, binds module IV of Cyr61 with micromolar affinity. But tinzaparin cannot interfere with Cyr61 accumulation onto syndecan-4, indicating different Cyr61 binding sites for heparin and other GAGs. Nonetheless, tinzaparin affects the VLA-4 binding and signalling functions selectively via Cyr61 already at very low concentration most likely by blocking the cellular secreted free Cyr61. This study emphasises Cyr61 as promising, and hitherto not considered target for heparin to selectively influence integrin functions.


2019 ◽  
Vol 16 (12) ◽  
pp. 1360-1369 ◽  
Author(s):  
Rail Khaziev ◽  
Nikita Shtyrlin ◽  
Roman Pavelyev ◽  
Raushan Nigmatullin ◽  
Raylya Gabbasova ◽  
...  

Background: Adamantane derivatives possess multiple pharmacological activities such as antiviral, anticancer, antimycobacterial, antidiabetic, antiparkinsonian and others. The interest of medicinal chemists in adamantane compounds is due to their unique spatial structure, high lipophilicity, and carbon cage rigidity. As a result, these molecules can easily penetrate biological lipid membranes and often have unique target-specific activity profile. Another pharmacophore studied in this work is pyridoxine (vitamin B6). Pyridoxine plays highly important roles in living cells as a key cofactor of many enzymes. On the other hand, its molecular scaffold is a valuable structural platform which has led to the development of several launched drugs (Pyritinol, Pirisudanol, Cycletanine, Mangafodipir) and a wide number of preclinical and clinical drug candidates. Objective: The objective of this study is a synthesis of pyridoxine-adamantane and pyridoxinecyclooctane dipharmacophore molecules. The underlying idea was to assess the antibacterial and antiviral potential of such dipharmacophores, based on multiple examples of promising antiinfective agents which have in their structures adamantane and pyridoxine moieties. Another specific reason was to explore the ability of pyridoxine pharmacophore to suppress the potential of microbial pathogens to develop resistance to drug molecules. Methods: In this study, a series of pyridoxine-adamantane and pyridoxine-cyclooctane dipharmacophore molecules were synthesized based on reactions of three different cycloalkyl amines with the corresponding electrophilic derivatives of pyridoxine aldehydes, chlorides and acetates. All synthesized compounds have been tested for their in vitro activity against M. tuberculosis H37Rv strain and H3N2 (A/Aichi/2/68) influenza virus. Results: Series of pyridoxine-adamantane and pyridoxine-cyclooctane dipharmacophore molecules were synthesized based on reactions of three different cycloalkylamines with the corresponding electrophilic derivatives of pyridoxine aldehydes, chlorides and acetates. Reaction of cycloalkylamines with pyridoxine derivatives, in which meta-hydroxyl and ortho-hydroxymethyl groups are protected by acetyl groups, represents a useful alternative to reductive amination of aldehydes and nucleophilic substitution of alkyl halides. According to a tentative mechanism, it proceeds via paraand ortho-pyridinone methides which readily react with nucleophiles. None of the synthesized dipharmacophore compounds showed activity against M. tuberculosis H37Rv strain. At the same time, three compounds demonstrated some antiviral activity against H3N2 (A/Aichi/2/68) influenza virus (EC50 52-88 µg/mL) that was comparable to the activity of Amantadine, though lower than the activity of Rimantadine. The results of this work can be useful in the design of physiologically active derivatives of pyridoxine and adamantane. Conclusion: The results of this work can be useful in the design of physiologically active derivatives of pyridoxine and adamantane.


Author(s):  
Jogendra Singh Nim ◽  
Mohit Yadav ◽  
Lalit Kumar Gautam ◽  
Chaitali Ghosh ◽  
Shakti Sahi ◽  
...  

Background: Xenorhabdus nematophila maintains species-specific mutual interaction with nematodes of Steinernema genus. Type II Toxin Antitoxin (TA) systems, the mazEF TA system controls stress and programmed cell death in bacteria. Objective: This study elucidates the functional characterization of Xn-mazEF, a mazEF homolog in X. nematophila by computational and in vitro approaches. Methods: 3 D- structural models for Xn-MazE toxin and Xn-MazF antitoxin were generated, validated and characterized for protein - RNA interaction analysis. Further biological and cellular functions of Xn-MazF toxin were also predicted. Molecular dynamics simulations of 50ns for Xn-MazF toxin complexed with nucleic acid units (DU, RU, RC, and RU) were performed. The MazF toxin and complete MazEF operon were endogenously expressed and monitored for the killing of Escherichia coli host cells under arabinose induced tightly regulated system. Results: Upon induction, E. coli expressing toxin showed rapid killing within four hours and attained up to 65% growth inhibition, while the expression of the entire operon did not show significant killing. The observation suggests that the Xn-mazEF TA system control transcriptional regulation in X. nematophila and helps to manage stress or cause toxicity leading to programmed death of cells. Conclusion: The study provides insights into structural and functional features of novel toxin, XnMazF and provides an initial inference on control of X. nematophila growth regulated by TA systems.


2020 ◽  
Author(s):  
Avik Sotira Scientific

UNSTRUCTURED Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome (SARS) caused by a virus known as SARS-Coronavirus 2 (SARS-CoV2). Without a targeted-medicine, this disease has been causing a massive humanitarian crisis not only in terms of mortality, but also imposing a lasting damage to social life and economic progress of humankind. Therefore, an immediate therapeutic strategy needs to be intervened to mitigate this global crisis. Here, we report a novel KepTide™ (Knock-End Peptide) therapy that nullifies SARS-CoV2 infection. SARS-CoV2 employs its surface glycoprotein “spike” (S-glycoprotein) to interact with angiotensin converting enzyme-2 (ACE-2) receptor for its infection in host cells. Based on our in-silico-based homology modeling study validated with a recent X-ray crystallographic structure (PDB ID:6M0J), we have identified that a conserved motif of S-glycoprotein that intimately engages multiple hydrogen-bond (H-bond) interactions with ACE-2 enzyme. Accordingly, we designed a peptide, termed as ACIS (ACE-2 Inhibitory motif of Spike), that displayed significant affinity towards ACE-2 enzyme as confirmed by biochemical assays such as BLItz and fluorescence polarization assays. Interestingly, more than one biochemical modifications were adopted in ACIS in order to enhance the inhibitory action of ACIS and hence called as KEpTide™. Consequently, a monolayer invasion assay, plaque assay and dual immunofluorescence analysis further revealed that KEpTide™ efficiently mitigated the infection of SARS-CoV2 in vitro in VERO E6 cells. Finally, evaluating the relative abundance of ACIS in lungs and the potential side-effects in vivo in mice, our current study discovers a novel KepTide™ therapy that is safe, stable, and robust to attenuate the infection of SARS-CoV2 virus if administered intranasally. INTERNATIONAL REGISTERED REPORT RR2-https://doi.org/10.1101/2020.10.13.337584


Sign in / Sign up

Export Citation Format

Share Document