Macronuclear differentiation during oral regeneration in Stentor coeruleus

1975 ◽  
Vol 19 (3) ◽  
pp. 531-541
Author(s):  
J.J. Paulin ◽  
A.S. Brooks

The moniliform macronucleus of Stentor coeruleus coalesces and renodulates during division, reorganization and regeneration. These nuclear events are spatially and temporally synchronized with oral primordium development occurring at stages six and seven of membranellar morphogenesis. Coalesced, elongating and early renodulating macronuclei at states six and seven contained microtubules within double membrane-bound channels, passing through the nucleus parallel to the long axis. The number of microtubules per channel varied between 4 and 23. Microtubules were also found in the perinuclear cytoplasm at these stages, forming a loose network around the nucleus. The microtubules and channels are absent in control cells and macronuclei of regenerating cells prior to stage six. These transient microtubules and channels appearing in late stage six and stage seven may provide the axial plane on which elongation of the macronucleus proceeds.

Author(s):  
M. H. Chen ◽  
C. Hiruki

Wheat spot mosaic disease was first discovered in southern Alberta, Canada, in 1956. A hitherto unidentified disease-causing agent, transmitted by the eriophyid mite, caused chlorosis, stunting and finally severe necrosis resulting in the death of the affected plants. Double membrane-bound bodies (DMBB), 0.1-0.2 μm in diameter were found to be associated with the disease.Young tissues of leaf and root from 4-wk-old infected wheat plants were fixed, dehydrated, and embedded in Spurr’s resin. Serial sections were collected on slot copper grids and stained. The thin sections were then examined with a Hitachi H-7000 TEM at 75 kV. The membrane structure of the DMBBs was studied by numbering them individually and tracing along the sections to see any physical connection with endoplasmic reticulum (ER) membranes. For high resolution scanning EM, a modification of Tanaka’s method was used. The specimens were examined with a Hitachi Model S-570 SEM in its high resolution mode at 20 kV.


Author(s):  
K. S. Zaychuk ◽  
M. H. Chen ◽  
C. Hiruki

Wheat spot mosaic (WSpM), which frequently occurs with wheat streak mosaic virus was first reported in 1956 from Alberta. Singly isolated, WSpM causes chlorotic spots, chlorosis, stunting, and sometimes death of the wheat plants. The vector responsible for transmission is the eriophyid mite, Eriophyes tulipae Kiefer. The examination of leaf ultrastructure by electron microscopy has revealed double membrane bound bodies (DMBB’s) 0.1-0.2 μm in diameter. Dispersed fibrils within these bodies suggested the presence of nucleic acid. However, neither ribosomes characteristic of bacteria, mycoplasma and the psittacosis group of organisms nor an electron dense core characteristic of many viruses was commonly evident.In an attempt to determine if the DMBB’s contain nucleic acids, RNase A, DNase I, and lactoferrin protein were conjugated with 10 nm colloidal gold as previously described. Young root and leaf tissues from WSpM-affected wheat plants were fixed in glutaraldehyde, postfixed in osmium tetroxide,and embedded in Spurr’s resin.


Micron ◽  
2021 ◽  
Vol 143 ◽  
pp. 103024
Author(s):  
Junhyung Park ◽  
A Reum Je ◽  
Sang Gil Lee ◽  
Jae Hyuck Jang ◽  
Yang Hoon Huh ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 1
Author(s):  
Alessandra Ferramosca

Mitochondria are double membrane-bound organelles which are essential for the viability of eukaryotic cells, because they play a crucial role in bioenergetics, metabolism and signaling [...]


1978 ◽  
Vol 56 (19) ◽  
pp. 2380-2404 ◽  
Author(s):  
D. J. S. Barr ◽  
V. E. Hadland-Hartmann

The zoospore ultrastructure of 12 species of Rhizophydium is described. Species include the following: R. chlorogonii (Serbinow) Jaczewski; R. constantineani Saccardo; R. haynaldii (Schaarschmidt) Fischer; R. capillaceum Barr; two morphologically and cytologically different species, each previously identified as R. sphaerotheca Zopf; R. patellarium Scholz; R. biporosum (Couch) Barr; R. subangulosum (Braun) Rabenhorst; R. laterale (Braun) Rabenhorst; R. sphaerocarpum (Zopf) Fischer var. spirogyrae Barr; and two isolates of R. pollinis-pini (Braun) Zopf. The Rhizophydium zoospore is basically similar to the Chytridium zoospore having (1) the nucleus, a compact cluster of ribosomes, one or more mitochondria, and a microbody – lipid globule complex compartmentalized into the core of the zoospore by a double membrane system and (2) two to five microtubules connecting one side of the kinetosome to the rumposome on the lipid globule surface and thus anchoring the lipid globule in a lateral–posterior position in the zoospore. Rhizophydium patellarium does not have kinetosome-associated microtubules or a rumposome but does have the membrane-bound core area. In all species, a microbody and mitochondrion are associated with the lipid globule. The number of mitochondria varies from 1 in some species to several or to over 30 in other species. In one isolate of R. pollinis-pini, there is 1 large mitochondrion and in the other there were 30–35 small mitochondria. The peripheral cytoplasm of all species contains clusters of vesicles or endoplasmic reticulum which bud from the double membrane system, vesicles of moderate electron density, and vacuoles of various sizes; R. capillaceum, R. patellarium, and R. subangulosum have in addition vesicles which contain very electron-dense material. Rhizophydium capillaceum and R. sphaerocarpum zoospores have virus-like particles and the R. biporosum zoospore contains a paracrystalline body. The taxonomic significance of the observations and the relationship of Rhizophydium to other chytrids are stressed in the Discussion.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2906-2906
Author(s):  
Jemimah Adams ◽  
R Gitendra Wickremasinghe ◽  
Archibald G Prentice ◽  
Jonathan C. Strefford ◽  
Andrew Duncombe ◽  
...  

Abstract Abstract 2906 Chronic Lymphocytic leukemia (CLL) is currently incurable using conventional therapies. CLL cells can evade killing by various therapeutic strategies. However the precise mechanisms are currently unknown. Autophagy is regulated by a complex system of proteins, and is used by both normal and malignant cells as a protective mechanism against cellular stress induced by starvation, hypoxia, reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. In malignant cells autophagy was shown to promote tumorigenesis and/or resistance to chemotherapy. Therefore we hypothesized that autophagy may play a role in CLL biology. Autophagy can also promote cell death when stress signals are elevated above a particular threshold for a prolonged period of time. In this study we investigated the basal expression levels of autophagy specific genes and the effect of autophagy specific inhibitors (Bafilomycin, 3-methyladenine and hydroxychloroquine) and inducers (Phenethyl isothiocyanate) on CLL survival. Phenethyl isothiocyanate (PEITC) is about to enter clinical trials for CLL (NCT00968461). We have investigated induction of components of the autophagic pathway following treatment of CLL cells in vitro with a range of chemical inhibitors. Immunoblotting was carried out to investigate components of the autophagy pathway using phosphorylation state-specific and pan-reactive antibodies. Bafilomycin (BAF), 3-methyladenine (3-MA) and hydroxychloroquine (HCQ) toxicity towards CLL samples were evaluated by Annexin V/PI staining, MTT assay and immunoblotting for cleavage of the caspase 3 substrate poly(ADP ribose) polymerase (PARP) from its 116KDa to its 85KDa form. PEITC was used at concentrations between 2.5 and 25μM to investigate its effect on signaling. Autophagy was quantitated by immunoblotting of LC3-I and LC3-II. Lipidation of LC3 from LC3-I to LC3-II is a surrogate marker of autophagy and is essential for autophagasome formation. Immunoblotting was also performed for ATG3, ATG5 and ATG7, key components of the autophagy pathway. Monodansylcadaverine (MDC) was used with immunofluorescence and FACS analysis to investigate increases in autophagasome formation. Transmission electron microscopy (TEM) was used to confirm double membrane bound autophagosomes. Co-immunoprecipitation was used to evaluate if Beclin-1 was sequestered by Bcl-2 preventing autophagy. Its release from Bcl-2 enables Beclin-1 to interact with other autophagy specific proteins and initiates autophagasome formation. LC3-I was lipidated to LC3-II (p=0.019) and ATG3 (p=0.021) was upregulated to a greater extent in CLL samples compared with normal B-cell controls at basal levels. This suggested that autophagy was active to a greater extent in CLL samples compared with normal individuals. In addition Beclin was dissociated from Bcl-2 in CLL samples indicating that autophagy was active. Autophagy appears to be a pro-survival mechanism in untreated CLL cells as inhibiting basal levels of autophagy with autophagy inhibitors BAF (50–200nM), 3-MA (5–10mM) and hydroxychlorquine (5–10μM) resulted in CLL apoptosis as shown by MTT, Annexin V/PI analysis and PARP cleavage. Interestingly augmenting autophagy was also capable of inducing apoptosis in CLL samples. Treatment with PEITC caused an increase in punctate staining using MDC which is suggestive of autophagosome formation. We went on to determine that PEITC further induced LC3-II lipidation using immunoblotting and showed a substantial increase in overall LC3 protein expression. PEITC also induced the expression of ATG3, a key protein in the autophagy pathway. We then evaluated autophagosome formation using TEM (Figure 1). Our data showed greater numbers of autophagosomes in the PEITC treated samples compared to the untreated controls. Therefore autophagy in CLL sits on a knife-edge, such that perturbations that either increase pro- death or decrease pro-survival autophagy signals can result in CLL cell death, depending on the duration and intensity of the signal. Figure 1. Transmission electron microscopy of CLL cells CLL cells were treated with 10μM PEITC. Double membrane bound organelles were found in the CLL cells after treatment which were not present in the no addition control (depicted by the arrows). These organelles are autophagsomes. Magnification (left picture) ruler is 500nM, (right picture) ruler is 100nM Figure 1. Transmission electron microscopy of CLL cells . / CLL cells were treated with 10μM PEITC. Double membrane bound organelles were found in the CLL cells after treatment which were not present in the no addition control (depicted by the arrows). These organelles are autophagsomes. Magnification (left picture) ruler is 500nM, (right picture) ruler is 100nM Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
pp. mbc.E20-07-0500
Author(s):  
Eri Hirata ◽  
Kyo Shirai ◽  
Tatsuya Kawaoka ◽  
Kosuke Sato ◽  
Fumito Kodama ◽  
...  

Autophagy is a cellular degradation system widely conserved among eukaryotes. During autophagy, cytoplasmic materials fated for degradation are compartmentalized in double membrane–bound organelles called autophagosomes. After fusing with the vacuole, their inner membrane–bound structures are released into the vacuolar lumen to become autophagic bodies and eventually degraded by vacuolar hydrolases. Atg15 is a lipase essential for disintegration of autophagic body membranes and has a transmembrane domain at the N-terminus and a lipase domain at the C-terminus. However, the roles of both domains in vivo are not well understood. In this study, we found that the N-terminal domain alone can travel to the vacuole via the multivesicular body pathway, and that targeting of the C-terminal lipase domain to the vacuole is required for degradation of autophagic bodies. Moreover, we found that the C-terminal domain could disintegrate autophagic bodies when it was transported to the vacuole via the Pho8 pathway instead of the multivesicular body pathway. Finally, we identified H435 as one of the residues composing the putative catalytic triad, and W466 as an important residue for degradation of autophagic bodies. This study may provide a clue to understanding how the C-terminal lipase domain recognizes autophagic bodies to degrade them. [Media: see text] [Media: see text]


2020 ◽  
Author(s):  
Moona Huttunen ◽  
Artur Yakimovich ◽  
Ian J. White ◽  
Janos Kriston-Vizi ◽  
Juan Martin-Serrano ◽  
...  

Unlike most enveloped viruses, poxvirus egress is a complex process whereby cytoplasmic single membrane-bound virions are wrapped in a cell-derived double membrane. These triple membrane-bound particles, termed intracellular enveloped virions (IEVs), are then released from infected cells by fusion. While the wrapping double membrane is thought to be derived from virus-modified trans-Golgi or early endosomal cisternae, the cellular factors that regulate virus wrapping remain largely undefined. To identify novel cell factors required for this process the prototypic poxvirus, vaccinia virus (VACV), was subjected to a high-throughput RNAi screen directed against cellular membrane trafficking proteins. Focusing on the endosomal sorting complexes required for transport (ESCRT), we demonstrate that ESCRT-III and VPS4 are required for packaging of virus into multivesicular bodies (MVBs). EM-based characterization of these MVB-IEVs showed that they account for half of IEV production indicating that MVBs serve as a second major source of VACV wrapping membrane. These data support a model whereby, in addition to cisternae-based wrapping, VACV hijacks ESCRT-mediated MVB formation to facilitate virus egress and spread.


Author(s):  
S. Mehta ◽  
A. P. Minj

Transmission electron microscopic studies of eosinophil of horse, dog, pig and rabbit were carried out on six apparently healthy animals of each species. Ultrastructurally the eosinophils appeared round to oval in shape with few, short and narrow cytoplasmic processes in horse, oval with numerous long and wide cytoplasmic processes in dog and round with thin and broad small cytoplasmic processes in pig. While in rabbit it was round to oval in shape with long cytoplasmic processes. The nucleus had two to three lobes in all the animals. In all the four species it was observed that the heterochromatin was concentrated towards the periphery. Granules were mostly oval in outline and more or less similar in shape and size in horse while in dog the granules were rounded in shape and medium sized. In pig the double membrane bound cytoplasmic granules were roughly rounded to oval in shape and distributed throughout the cytoplasm. The granules in rabbit were mostly oval in outline and more or less similar in dimension. Cell organelles were clearly visible in the cytoplasm of horse while poorly visible in dog, pig and rabbit.


2009 ◽  
Vol 390 (8) ◽  
Author(s):  
Maik S. Sommer ◽  
Enrico Schleiff

Abstract Protein transport, especially into different cellular compartments, is a highly coordinated and regulated process. The molecular machineries which carry out these transport processes are highly complex in structure, function, and regulation. In the case of chloroplasts, thousands of protein molecules have been estimated to be transported across the double-membrane bound envelope per minute. In this brief review, we summarize current knowledge about the molecular interplay during precursor protein import into chloroplasts, focusing on the initial events at the outer envelope.


Sign in / Sign up

Export Citation Format

Share Document