scholarly journals Precise levels of the Drosophila adaptor protein Dreadlocks maintain the size and stability of germline ring canals

2021 ◽  
Vol 134 (8) ◽  
Author(s):  
Kara Stark ◽  
Olivia Crowe ◽  
Lindsay Lewellyn

ABSTRACT Intercellular bridges are essential for fertility in many organisms. The developing fruit fly egg has become the premier model system to study intercellular bridges. During oogenesis, the oocyte is connected to supporting nurse cells by relatively large intercellular bridges, or ring canals. Once formed, the ring canals undergo a 20-fold increase in diameter to support the movement of materials from the nurse cells to the oocyte. Here, we demonstrate a novel role for the conserved SH2/SH3 adaptor protein Dreadlocks (Dock) in regulating ring canal size and structural stability in the germline. Dock localizes at germline ring canals throughout oogenesis. Loss of Dock leads to a significant reduction in ring canal diameter, and overexpression of Dock causes dramatic defects in ring canal structure and nurse cell multinucleation. The SH2 domain of Dock is required for ring canal localization downstream of Src64 (also known as Src64B), and the function of one or more of the SH3 domains is necessary for the strong overexpression phenotype. Genetic interaction and localization studies suggest that Dock promotes WASp-mediated Arp2/3 activation in order to determine ring canal size and regulate growth. This article has an associated First Person interview with the first author of the paper.

2019 ◽  
Author(s):  
Josephine Thestrup ◽  
Marina Tipold ◽  
Alexandra Kindred ◽  
Kara Stark ◽  
Travis Curry ◽  
...  

AbstractIntercellular bridges are an essential structural feature found in both germline and somatic cells throughout the animal kingdom. Because of their large size, the germline intercellular bridges, or ring canals, in the developing fruit fly egg chamber are an excellent model to study the formation, stabilization, and expansion of these structures. Within the egg chamber, the germline ring canals connect 15 supporting nurse cells to the developing oocyte, facilitating the transfer of materials required for successful oogenesis. The ring canals are derived from a stalled actomyosin contractile ring; once formed, additional actin and actin-binding proteins are recruited to the ring to support the 20-fold expansion that accompanies oogenesis. These behaviors provide a unique model system to study the actin regulators that control incomplete cytokinesis, intercellular bridge formation, and expansion. By temporally controlling their expression in the germline, we have demonstrated that the Arp2/3 complex and the formin, Diaphanous (Dia), coordinately regulate ring canal size and expansion throughout oogenesis. Dia is required for successful incomplete cytokinesis and the initial stabilization of the germline ring canals. Once the ring canals have formed, the Arp2/3 complex and Dia cooperate to determine ring canal size and maintain their stability. Our data suggest that the nurse cells must maintain a precise balance between the activity of these two nucleators during oogenesis.


2020 ◽  
Vol 16 (5) ◽  
pp. 20200137
Author(s):  
Katherine J. Eastin ◽  
Austin P. Huang ◽  
Patrick M. Ferree

Egg development is a defining process of reproduction in higher eukaryotes. In the fruit fly, Drosophila melanogaster , this process begins with four mitotic divisions starting from a single germ cell, producing a cyst of 16 cystocytes; one of these cells will become the oocyte and the others supporting nurse cells. These mitotic divisions are exceptional because cytokinesis is incomplete, resulting in the formation of cytoplasmic bridges known as ring canals that interconnect the cystocytes. This organization allows all cystocytes to divide synchronously during each mitotic round, resulting in a final, power-of-2 number of germ cells. Given that numerous insects obey this power-of-2 rule, we investigated if strict cell doubling is a universal, underlying cause. Using confocal microscopy, we found striking departures from this paradigm in three different power-of-2 insects belonging to the Apocrita suborder (ants, bees and wasps). In these insects, the earliest-formed cystocytes cease to divide during the latter mitotic cycles while their descendants undergo further division, thereby producing a ‘radial’ direction of division activity. Such cystocyte division patterns that depart from strict cell doubling may be ‘fine-tuned’ in order to maintain a final, power-of-2 germ cell number.


1996 ◽  
Vol 133 (1) ◽  
pp. 61-74 ◽  
Author(s):  
L G Tilney ◽  
M S Tilney ◽  
G M Guild

Growing the intracellular bridges that connect nurse cells with each o ther and to the developing oocyte is vital for egg development. These ring canals increase from 0.5 microns in diameter at stage 2 to 10 microns in diameter at stage 11. Thin sections cut horizontally as you would cut a bagel, show that there is a layer of circumferentially oriented actin filaments attached to the plasma membrane at the periphery of each canal. By decoration with subfragment 1 of myosin we find actin filaments of mixed polarities in the ring such as found in the "contractile ring" formed during cytokinesis. In vertical sections through the canal the actin filaments appear as dense dots. At stage 2 there are 82 actin filaments in the ring, by stage 6 there are 717 and by stage 10 there are 726. Taking into account the diameter, this indicates that there is 170 microns of actin filaments/canal at stage 2 (pi x 0.5 microns x 82), 14,000 microns at stage 9 and approximately 23,000 microns at stage 11 or one inch of actin filament! The density of actin filaments remains unchanged throughout development. What is particularly striking is that by stages 4-5, the ring of actin filaments has achieved its maximum thickness, even though the diameter has not yet increased significantly. Thereafter, the diameter increases. Throughout development, stages 2-11, the canal length also increases. Although the density (number of actin filaments/micron2) through a canal remains constant from stage 5 on, the actin filaments appear as a net of interconnected bundles. Further information on this net of bundles comes from studying mutant animals that lack kelch, a protein located in the ring canal that has homology to the actin binding protein, scruin. In this mutant, the actin filaments form normally but individual bundles that comprise the fibers of the net are not bound tightly together. Some bundles enter into the ring canal lumen but do not completely occlude the lumen. all these observations lay the groundwork for our understanding of how a noncontractile ring increases in thickness, diameter, and length during development.


Development ◽  
2002 ◽  
Vol 129 (19) ◽  
pp. 4423-4433 ◽  
Author(s):  
Stephen M. Jackson ◽  
Celeste A. Berg

Protein kinase A (PKA) holoenzyme is anchored to specific subcellular regions by interactions between regulatory subunits (Pka-R) and A-kinase anchoring proteins (AKAPs). We examine the functional importance of PKA anchoring during Drosophila oogenesis by analyzing membrane integrity and actin structures in mutants with disruptions in Akap200, an AKAP. In wild-type ovaries, Pka-RII and Akap200 localized to membranes and to the outer rim of ring canals, actin-rich structures that connect germline cells. In Akap200 mutant ovaries, Pka-RII membrane localization decreased, leading to a destabilization of membrane structures and the formation of binucleate nurse cells. Defects in membrane integrity could be mimicked by expressing a constitutively active PKA catalytic subunit (Pka-C) throughout germline cells. Unexpectedly, nurse cells in Akap200 mutant ovaries also had enlarged, thin ring canals. In contrast, overexpressing Akap200 in the germline resulted in thicker, smaller ring canals. To investigate the role of Akap200 in regulating ring canal growth, we examined genetic interactions with other genes that are known to regulate ring canal morphology. Akap200 mutations suppressed the small ring canal phenotype produced by Src64B mutants, linking Akap200 with the non-receptor tyrosine kinase pathway. Together, these results provide the first evidence that PKA localization is required for morphogenesis of actin structures in an intact organism.


Development ◽  
1998 ◽  
Vol 125 (15) ◽  
pp. 2883-2892 ◽  
Author(s):  
G.S. Dodson ◽  
D.J. Guarnieri ◽  
M.A. Simon

The Src family of protein tyrosine kinases have been implicated as important regulators of cellular proliferation, differentiation and function. In order to understand further the role of Src family kinases, we have generated loss-of-function mutations in Src64, one of two Src family kinases known in Drosophila melanogaster. Animals with reduced Src64 function develop normally and are fully viable. However, Src64 female flies have reduced fertility, which is associated with the incomplete transfer of cytoplasm from nurse cells to the developing oocyte. Analysis of Src64 egg chambers showed defects in the ring canals that interconnect the oocyte and its 15 associated nurse cells. Src64 ring canals fail to accumulate the high levels of tyrosine phosphorylation that are normally present. Despite the reduced tyrosine phosphorylation, known ring canal components such as filamentous actin, a ring canal-specific product of the hu-li tai shao gene, and the kelch protein localize properly. However, Src64 ring canals are reduced in size and frequently degenerate. These results indicate that Src64 is required for the proper growth and stability of the ovarian ring canals.


Blood ◽  
2010 ◽  
Vol 116 (26) ◽  
pp. 5961-5971 ◽  
Author(s):  
Fanny Baran-Marszak ◽  
Hajer Magdoud ◽  
Christophe Desterke ◽  
Anabell Alvarado ◽  
Claudine Roger ◽  
...  

Abstract Activating mutations in signaling molecules, such as JAK2-V617F, have been associated with myeloproliferative neoplasms (MPNs). Mice lacking the inhibitory adaptor protein Lnk display deregulation of thrombopoietin/thrombopoietin receptor signaling pathways and exhibit similar myeloproliferative characteristics to those found in MPN patients, suggesting a role for Lnk in the molecular pathogenesis of these diseases. Here, we showed that LNK levels are up-regulated and correlate with an increase in the JAK2-V617F mutant allele burden in MPN patients. Using megakaryocytic cells, we demonstrated that Lnk expression is regulated by the TPO-signaling pathway, thus indicating an important negative control loop in these cells. Analysis of platelets derived from MPN patients and megakaryocytic cell lines showed that Lnk can interact with JAK2-WT and V617F through its SH2 domain, but also through an unrevealed JAK2-binding site within its N-terminal region. In addition, the presence of the V617F mutation causes a tighter association with Lnk. Finally, we found that the expression level of the Lnk protein can modulate JAK2-V617F–dependent cell proliferation and that its different domains contribute to the inhibition of multilineage and megakaryocytic progenitor cell growth in vitro. Together, our results indicate that changes in Lnk expression and JAK2-V617F–binding regulate JAK2-mediated signals in MPNs.


2018 ◽  
Vol 10 (1) ◽  
pp. e2018014 ◽  
Author(s):  
Masafumi Taniwaki ◽  
Mihoko Yoshida ◽  
Yosuke Matsumoto ◽  
Kazuho Shimura ◽  
Junya Kuroda ◽  
...  

Elotuzumab, targeting signaling lymphocytic activation molecule family 7 (SLAMF7), has been approved in combination with lenalidomide and dexamethasone   (ELd)   for relapsed/refractory  multiple myeloma (MM) based on the findings of the phase III randomized trial  ELOQUENT-2 (NCT01239797). Four-year  follow-up  analyses  of  ELOQUENT-2 have demonstrated  that  progression-free survival was 21%  in  ELd  versus  14%  in  Ld. Elotuzumab binds a unique epitope on the membrane IgC2 domain of SLAMF7, exhibiting a dual mechanism of  action:  natural  killer  (NK)  cell-mediated  antibody-dependent  cellular  cytotoxicity  (ADCC) and  enhancement  of  NK  cell  activity.  The  ADCC  is  mediated  through  engagement  between  Fc portion  of  elotuzumab  and  FcgRIIIa/CD16  on  NK  cells. Enhanced NK cell cytotoxicity results fromm phosphorylation  of  the  immunoreceptor  tyrosine-based  switch  motif  (ITSM)  that  is induced via elotuzumab binding and recruits the SLAM-associated adaptor protein EAT-2.The coupling of EAT-2 to the phospholipase Cg enzymes SH2 domain leads to enhanced Ca2+. Influx and MAPK/Erk pathway activation, resulting in granule polarization and enhanced exocytosis inNK  cells. Elotuzumab  does not stimulate the  proliferation of MM cells due to a lack of EAT-2.The  inhibitory  effects  of  elotuzumab  on  MM  cell  growth  are  not  induced by  the lack  of  CD45, even  though  SHP-2,  SHP-1,  SHIP-1,  and  Csk may be  recruited  to  phosphorylated  ITSM  of SLAMF7.  ELd  improves PFS in patients  with  high-risk  cytogenetics,  i.e.  t(4;14),  del(17p),  and 1q21  gain/amplification. Since  the immune  state  is  paralytic  in  advanced  MM,  the  efficacy  of ELd with minimal toxicity may bring forward for consideration of its use in the early stages of the disease.


1997 ◽  
Vol 17 (3) ◽  
pp. 1702-1713 ◽  
Author(s):  
D D Schlaepfer ◽  
M A Broome ◽  
T Hunter

The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 947-956 ◽  
Author(s):  
H. Lin ◽  
L. Yue ◽  
A.C. Spradling

Oogenesis in Drosophila takes place within germline cysts that support polarized transport through ring canals interconnecting their 15 nurse cells and single oocyte. Developing cystocytes are spanned by a large cytoplasmic structure known as the fusome that has been postulated to help form ring canals and determine the pattern of nurse cell-oocyte interconnections. We identified the adducin-like hts product and alpha-spectrin as molecular components of fusomes, discovered a related structure in germline stem cells and documented regular associations between fusomes and cystocyte centrosomes. hts mutations completely eliminated fusomes, causing abnormal cysts containing a reduced number of cells to form. Our results imply that Drosophila fusomes are required for ovarian cyst formation and suggest that membrane skeletal proteins regulate cystocyte divisions.


Sign in / Sign up

Export Citation Format

Share Document