From tip to toe – dressing centrioles in γTuRC

2021 ◽  
Vol 134 (14) ◽  
Author(s):  
Nina Schweizer ◽  
Jens Lüders

ABSTRACT Centrioles are microtubule-based cylindrical structures that assemble the centrosome and template the formation of cilia. The proximal part of centrioles is associated with the pericentriolar material, a protein scaffold from which microtubules are nucleated. This activity is mediated by the γ-tubulin ring complex (γTuRC) whose central role in centrosomal microtubule organization has been recognized for decades. However, accumulating evidence suggests that γTuRC activity at this organelle is neither restricted to the pericentriolar material nor limited to microtubule nucleation. Instead, γTuRC is found along the entire centriole cylinder, at subdistal appendages, and inside the centriole lumen, where its canonical function as a microtubule nucleator might be supplemented or replaced by a function in microtubule anchoring and centriole stabilization, respectively. In this Opinion, we discuss recent insights into the expanded repertoire of γTuRC activities at centrioles and how distinct subpopulations of γTuRC might act in concert to ensure centrosome and cilia biogenesis and function, ultimately supporting cell proliferation, differentiation and homeostasis. We propose that the classical view of centrosomal γTuRC as a pericentriolar material-associated microtubule nucleator needs to be revised.

2017 ◽  
Vol 28 (1) ◽  
pp. 120-127 ◽  
Author(s):  
Li-En Jao ◽  
Abdalla Akef ◽  
Susan R. Wente

Control of organellar assembly and function is critical to eukaryotic homeostasis and survival. Gle1 is a highly conserved regulator of RNA-dependent DEAD-box ATPase proteins, with critical roles in both mRNA export and translation. In addition to its well-defined interaction with nuclear pore complexes, here we find that Gle1 is enriched at the centrosome and basal body. Gle1 assembles into the toroid-shaped pericentriolar material around the mother centriole. Reduced Gle1 levels are correlated with decreased pericentrin localization at the centrosome and microtubule organization defects. Of importance, these alterations in centrosome integrity do not result from loss of mRNA export. Examination of the Kupffer’s vesicle in Gle1-depleted zebrafish revealed compromised ciliary beating and developmental defects. We propose that Gle1 assembly into the pericentriolar material positions the DEAD-box protein regulator to function in localized mRNA metabolism required for proper centrosome function.


2020 ◽  
Author(s):  
Jeongkyung Lee ◽  
Ruya Liu ◽  
Byung S. Kim ◽  
Yiqun Zhang ◽  
Feng Li ◽  
...  

2020 ◽  
Vol 29 ◽  
pp. 096368972091830 ◽  
Author(s):  
Ping Zhou ◽  
Andrew Irving ◽  
Huifang Wu ◽  
Juan Luo ◽  
Johana Aguirre ◽  
...  

Given the crucial role of microRNAs in the cellular proliferation of various types of cancers, we aimed to analyze the expression and function of a cellular proliferation-associated miR-188-5p in papillary thyroid carcinoma (PTC). Here we demonstrate that miR-188-5p is downregulated in PTC tumor tissues compared with the associated noncancerous tissues. We also validate that the miR-188-5p overexpression suppressed the PTC cancer cell proliferation. In addition, fibroblast growth factor 5 (FGF5) is observed to be downregulated in the PTC tumor tissues compared with the associated noncancerous tissues. Subsequently, FGF5 is identified as the direct functional target of miR-188-5p. Moreover, the silencing of FGF5 was found to inhibit PTC cell proliferation, which is the same pattern as miR-188-5p overexpression. These results suggest that miR-188-5p-associated silencing of FGF5 inhibits tumor cell proliferation in PTC. It also highlights the importance of further evaluating miR-188-5p as a potential biomarker and therapy target in PTC.


2001 ◽  
Vol 6 (12) ◽  
pp. 1055-1066 ◽  
Author(s):  
Keigyou Yoh ◽  
Takehiko Sugawara ◽  
Hozumi Motohashi ◽  
Yousuke Takahama ◽  
Akio Koyama ◽  
...  

2009 ◽  
Vol 20 (11) ◽  
pp. 2317-2326 ◽  
Author(s):  
Zhen-Mei Liu ◽  
Soo-Yeon Lee ◽  
Sukhéna Sarun ◽  
Dieter Peschel ◽  
Thomas Groth

2021 ◽  
Author(s):  
Junhua Gong ◽  
Minghua Cong ◽  
Hao Wu ◽  
Menghao Wang ◽  
He Bai ◽  
...  

Abstract Background The capacity of the liver to restore its architecture and function assures good prognoses of patients who suffer serious hepatic injury or cancer resection. In our study, we found that the P53/miR-34a/SIRT1 positive feedback loop has a remarkable negative regulatory effect, which is related to the termination of liver regeneration. Here, we described how P53/miR-34a/SIRT1 positive feedback loop controls liver regeneration and its possible relationship with liver cancer.Method We performed partial hepatectomy (PH) in mice transfected with adenovirus (Ade) overexpressing P53 and adenovirus-associated virus (AAV) knock-downing miR-34a. LR was analyzed by liver weight/body weight, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and cell proliferation, and the related cellular signals were investigated. Bile acid (BA) levels during LR were analyzed by metabolomics of bile acids. Results We found that the P53/miR-34a/SIRT1 positive feedback loop was activated in the late phase of LR. Overexpression of P53 terminated LR early and enhanced P53/miR-34a/SIRT1 positive feedback loop expression and its proapoptotic effect. Mice from the Ade-P53 group showed smaller livers and higher levels of serum ALT and AST than control mice. While knock-down of miR-34a abolished P53/miR-34a/SIRT1 positive feedback loop during LR. Mice from anti-miR-34a group showed larger livers and lower levels of PCNA-positive cells than control mice. T-β-MCA increased gradually during LR and peaked at 7 days after PH. T-β-MCA inhibited cell proliferation and promoted cell apoptosis via facilitating the P53/miR-34a/SIRT1 positive feedback loop during LR by suppressing FXR/SHP. Conclusion The P53/miR-34a/SIRT1 positive feedback loop plays an important role in the termination of LR. Our findings shed light on the molecular and metabolic mechanisms of LR termination and provide a potential therapeutic alternative for treating P53-wild-type HCC patients.


2019 ◽  
Author(s):  
Jingyuan Zhang ◽  
Daxiang Na ◽  
Miriam Dilts ◽  
Kenneth S. Henry ◽  
Patricia M. White

AbstractNoise induced hearing loss (NIHL) affects over ten million adults in the United States, and there is no biological treatment to restore endogenous function after damage. We hypothesized that activation of signaling from ERBB2 receptors in cochlear supporting cells could mitigate NIHL damage. We used the Tet-On genetic expression system to drive a constitutively active variant of ERBB2 (CA-ERBB2) in cochlear supporting cells three days after permanent noise damage in young adult mice. Hearing thresholds were assessed with auditory brainstem response tests prior to noise damage, and hearing recovery was assessed over a three month period. We evaluated supporting cell proliferation, inner and outer hair cell (IHC and OHC) survival, synaptic preservation, and IHC cytoskeletal alterations with histological techniques. Mice harboring CA-ERBB2 capability had similar hearing thresholds to control littermates prior to and immediately after noise exposure, and incurred similar levels of permanent hearing loss. Two and three months after noise exposure, CA-ERBB2+ mice demonstrated a partial but significant reversal of NIHL threshold shifts at the lowest frequency tested, out of five frequencies (n=19 total mice, p=0.0015, ANOVA). We also observed improved IHC and OHC survival (n=7 total cochleae, p=5 × 10−5, Kruskal-Wallis rank sum test). There was no evidence for sustained supporting cell proliferation. Some mortality was associated with doxycycline and furosemide treatments to induce the Tet-ON system. These data suggest that ERBB2 signaling in supporting cells promotes HC repair and some functional recovery. Funded by NIH R01 DC014261, and grants from the Schmitt Foundation and UR Ventures.


2020 ◽  
Author(s):  
Dong Gil Jang ◽  
Keun Yeong Kwon ◽  
Yeong Cheon Kweon ◽  
Byung-gyu Kim ◽  
Kyungjae Myung ◽  
...  

AbstractThe gap junction complex functions as a transport channel across the membrane. Among gap junction subunits, gap junction protein alpha 1 (GJA1) is the most commonly expressed subunit. However, the roles of GJA1 in the formation and function of cilia remain unknown. Here, we examined GJA1 functions during ciliogenesis in vertebrates. GJA1 was localized to the motile ciliary axonemes or pericentriolar material (PCM) around the primary cilium. GJA1 depletion caused the severe malformation of both primary cilium and motile cilia. Interestingly, GJA1 depletion caused strong delocalization of BBS4 from the PCM and basal body and distinct distribution as cytosolic puncta. Further, CP110 removal from the mother centriole was significantly reduced by GJA1 depletion. Importantly, Rab11, key regulator during ciliogenesis, was immunoprecipitated with GJA1 and GJA1 knockdown caused the mis-localization and mis-accumulation of Rab11. These findings suggest that GJA1 is necessary for proper ciliogenesis by regulating the Rab11 pathway.


2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Michal Wieczorek ◽  
Shih-Chieh Ti ◽  
Linas Urnavicius ◽  
Kelly R. Molloy ◽  
Amol Aher ◽  
...  

The formation of cellular microtubule networks is regulated by the γ-tubulin ring complex (γ-TuRC). This ∼2.3 MD assembly of >31 proteins includes γ-tubulin and GCP2-6, as well as MZT1 and an actin-like protein in a “lumenal bridge” (LB). The challenge of reconstituting the γ-TuRC has limited dissections of its assembly and function. Here, we report a biochemical reconstitution of the human γ-TuRC (γ-TuRC-GFP) as a ∼35 S complex that nucleates microtubules in vitro. In addition, we generate a subcomplex, γ-TuRCΔLB-GFP, which lacks MZT1 and actin. We show that γ-TuRCΔLB-GFP nucleates microtubules in a guanine nucleotide–dependent manner and with similar efficiency as the holocomplex. Electron microscopy reveals that γ-TuRC-GFP resembles the native γ-TuRC architecture, while γ-TuRCΔLB-GFP adopts a partial cone shape presenting only 8–10 γ-tubulin subunits and lacks a well-ordered lumenal bridge. Our results show that the γ-TuRC can be reconstituted using a limited set of proteins and suggest that the LB facilitates the self-assembly of regulatory interfaces around a microtubule-nucleating “core” in the holocomplex.


2020 ◽  
Author(s):  
Mikito Owa ◽  
Brian Dynlacht

SummaryCentromere-associated protein-E (CENP-E) is a kinesin motor localizing at kinetochores. Although its mitotic functions have been well studied, it has been challenging to investigate direct consequences of CENP-E removal using conventional methods because CENP-E depletion results in mitotic arrest. In this study, we harnessed an auxin-inducible degron system to achieve acute degradation of CENP-E. We revealed a kinetochore-independent role for CENP-E that removes pericentriolar material 1 (PCM1) from centrosomes in G2 phase. After acute loss of CENP-E, centrosomal Polo-like kinase 1 (Plk1) is sequestered by accumulated PCM1, resulting in aberrant phosphorylation and destabilization of centrosomes, which triggers loss of astral microtubules and oblique cell divisions. Furthermore, we also observed centrosome and cell division defects in cells from a microcephaly patient with mutations in CENPE. Orientation of cell division is deregulated in some microcephalic patients, and our unanticipated findings provide a unifying principle that explains how microcephaly can result from centrosomal defects.


Sign in / Sign up

Export Citation Format

Share Document