Selective adhesion and impaired adhesive properties of transformed cells

1978 ◽  
Vol 33 (1) ◽  
pp. 121-132
Author(s):  
M. Brugmans ◽  
J.J. Cassiman ◽  
H. van den Berghe

Quantitative studies on the adhesive properties of transformed cells have yielded inconclusive and sometimes contradictory results. The present investigation has examined adhesive interactions between normal human fibroblasts, established as well as virus-transformed animal cell lines, and human tumour-derived cell lines by the cell-cell layer binding assay. The results of these investigations indicate that adhesive selectivity can be observed between normal human fibroblasts and 2 human tumour-derived cell lines, providing an in vitro system to study cell surface components involved in cellular interactions between normal and malignant cells. In addition it is demonstrated that cell layers of transformed cells form a poorly adhesive substratum for both trypsinized normal and transformed cells. Furthermore, it is confirmed that the adhesive properties of transformed cells, including adhesive selectivity, are affected by the dissociation procedure (trypsin or EDTA). In view of the observations made by other investigators, the present results suggest that transformed cells display adhesive properties which can be quantitatively and reproducibly measured but which are modulated by the dissociation procedure as well as by the configuration in which the cells are at the time of the assay.

1993 ◽  
Vol 13 (10) ◽  
pp. 6036-6043
Author(s):  
T Ogata ◽  
D Ayusawa ◽  
M Namba ◽  
E Takahashi ◽  
M Oshimura ◽  
...  

Using nontumorigenic immortalized human cell lines KMST-6 (KMST) and SUSM-1 (SUSM), we attempted to identify the chromosome that carries a putative senescence-related gene(s). These cell lines are the only ones that have been established independently from normal human diploid fibroblasts following in vitro mutagenesis. We first examined restriction fragment length polymorphisms on each chromosome of these immortalized cell lines and their parental cell lines and found specific chromosomal alterations common to these cell lines (a loss of heterozygosity in KMST and a deletion in SUSM) on the long arm of chromosome 7. In addition to these, we also found that introduction of chromosome 7 into these cell lines by means of microcell fusion resulted in the cessation of cell division, giving rise to cells resembling cells in senescence. Introduction of other chromosomes, such as chromosomes 1 and 11, on which losses of heterozygosity were also detected in one of the cell lines (KMST), to either KMST or SUSM cells or of chromosome 7 to several tumor-derived cell lines had no effect on their division potential. These results strongly suggest that a gene(s) affecting limited-division potential or senescence of normal human fibroblasts is located on chromosome 7, probably at the long arm of the chromosome, representing the first case in which a specific chromosome reverses the immortal phenotype of otherwise normal human cell lines.


1993 ◽  
Vol 13 (10) ◽  
pp. 6036-6043 ◽  
Author(s):  
T Ogata ◽  
D Ayusawa ◽  
M Namba ◽  
E Takahashi ◽  
M Oshimura ◽  
...  

Using nontumorigenic immortalized human cell lines KMST-6 (KMST) and SUSM-1 (SUSM), we attempted to identify the chromosome that carries a putative senescence-related gene(s). These cell lines are the only ones that have been established independently from normal human diploid fibroblasts following in vitro mutagenesis. We first examined restriction fragment length polymorphisms on each chromosome of these immortalized cell lines and their parental cell lines and found specific chromosomal alterations common to these cell lines (a loss of heterozygosity in KMST and a deletion in SUSM) on the long arm of chromosome 7. In addition to these, we also found that introduction of chromosome 7 into these cell lines by means of microcell fusion resulted in the cessation of cell division, giving rise to cells resembling cells in senescence. Introduction of other chromosomes, such as chromosomes 1 and 11, on which losses of heterozygosity were also detected in one of the cell lines (KMST), to either KMST or SUSM cells or of chromosome 7 to several tumor-derived cell lines had no effect on their division potential. These results strongly suggest that a gene(s) affecting limited-division potential or senescence of normal human fibroblasts is located on chromosome 7, probably at the long arm of the chromosome, representing the first case in which a specific chromosome reverses the immortal phenotype of otherwise normal human cell lines.


2021 ◽  
Vol 14 (6) ◽  
pp. 541
Author(s):  
Hani A. Alhadrami ◽  
Ahmed M. Sayed ◽  
Heba Al-Khatabi ◽  
Nabil A. Alhakamy ◽  
Mostafa E. Rateb

The COVID-19 pandemic is still active around the globe despite the newly introduced vaccines. Hence, finding effective medications or repurposing available ones could offer great help during this serious situation. During our anti-COVID-19 investigation of microbial natural products (MNPs), we came across α-rubromycin, an antibiotic derived from Streptomyces collinus ATCC19743, which was able to suppress the catalytic activity (IC50 = 5.4 µM and Ki = 3.22 µM) of one of the viral key enzymes (i.e., MPro). However, it showed high cytotoxicity toward normal human fibroblasts (CC50 = 16.7 µM). To reduce the cytotoxicity of this microbial metabolite, we utilized a number of in silico tools (ensemble docking, molecular dynamics simulation, binding free energy calculation) to propose a novel scaffold having the main pharmacophoric features to inhibit MPro with better drug-like properties and reduced/minimal toxicity. Nevertheless, reaching this novel scaffold synthetically is a time-consuming process, particularly at this critical time. Instead, this scaffold was used as a template to explore similar molecules among the FDA-approved medications that share its main pharmacophoric features with the aid of pharmacophore-based virtual screening software. As a result, cromoglicic acid (aka cromolyn) was found to be the best hit, which, upon in vitro MPro testing, was 4.5 times more potent (IC50 = 1.1 µM and Ki = 0.68 µM) than α-rubromycin, with minimal cytotoxicity toward normal human fibroblasts (CC50 > 100 µM). This report highlights the potential of MNPs in providing unprecedented scaffolds with a wide range of therapeutic efficacy. It also revealed the importance of cheminformatics tools in speeding up the drug discovery process, which is extremely important in such a critical situation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2154
Author(s):  
Meysam Khosravifarsani ◽  
Samia Ait-Mohand ◽  
Benoit Paquette ◽  
Léon Sanche ◽  
Brigitte Guérin

Maximum benefits of chemoradiation therapy with platinum-based compounds are expected if the radiation and the drug are localized simultaneously in cancer cells. To optimize this concomitant effect, we developed the novel chemoradiotherapeutic agent [64Cu]Cu-NOTA-C3-TP by conjugating, via a short flexible alkyl chain spacer (C3), a terpyridine platinum (TP) moiety to a NOTA chelator complexed with copper-64 (64Cu). The decay of 64Cu produces numerous low-energy electrons, enabling the 64Cu-conjugate to deliver radiation energy close to TP, which intercalates into G-quadruplex DNA. Accordingly, the in vitro internalization kinetic and the cytotoxic activity of [64Cu]Cu-NOTA-C3-TP and its derivatives were investigated with colorectal cancer (HCT116) and normal human fibroblast (GM05757) cells. Radiolabeling by 64Cu results in a >55,000-fold increase of cytotoxic potential relative to [NatCu]Cu-NOTA-C3-TP at 72 h post administration, indicating a large additive effect between 64Cu and the TP drug. The internalization and nucleus accumulation of [64Cu]Cu-NOTA-C3-TP in the HCT116 cells were, respectively, 3.1 and 6.0 times higher than that for GM05757 normal human fibroblasts, which is supportive of the higher efficiency of the [64Cu]Cu-NOTA-C3-TP for HCT116 cancer cells. This work presents the first proof-of-concept study showing the potential use of the [64Cu]Cu-NOTA-C3-TP conjugate as a targeted chemoradiotherapeutic agent to treat colorectal cancer.


2019 ◽  
Vol 41 (5) ◽  
pp. 656-665
Author(s):  
Anastasia Kariagina ◽  
Sophia Y Lunt ◽  
J Justin McCormick

Abstract Metabolic changes accompanying a step-wise malignant transformation was investigated using a syngeneic lineage of human fibroblasts. Cell immortalization was associated with minor alterations in metabolism. Consecutive loss of cell cycle inhibition in immortalized cells resulted in increased levels of oxidative phosphorylation (OXPHOS). Overexpression of the H-Ras oncoprotein produced cells forming sarcomas in athymic mice. These transformed cells exhibited increased glucose consumption, glycolysis and a further increase in OXPHOS. Because of the markedly increased OXPHOS in transformed cells, the impact of a transaminase inhibitor, aminooxyacetic acid (AOA), which decreases glutamine influx to the tricarboxylic acid (TCA) cycle, was tested. Indeed, AOA significantly decreased proliferation of malignantly transformed fibroblasts and fibrosarcoma-derived cells in vitro and in vivo. AOA also decreased proliferation of cells susceptible to malignant transformation. Metabolomic studies in normal and transformed cells indicated that, in addition to the anticipated effect on the TCA cycle, AOA decreased production of nucleotides adenosine triphosphate (ATP) and uridine monophosphate. Exogenous nucleotides partially rescued decreased proliferation of the malignant cells treated with AOA. Our data indicate that AOA blocks several metabolic pathways essential for growth of malignant cells. Therefore, OXPHOS may provide important therapeutic targets for treatment of sarcoma.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii4-iii4
Author(s):  
A Bruning-Richardson ◽  
H Sanganee ◽  
S Barry ◽  
D Tams ◽  
T Brend ◽  
...  

Abstract BACKGROUND Targeting kinases as regulators of cellular processes that drive cancer progression is a promising approach to improve patient outcome in GBM management. The glycogen synthase kinase 3 (GSK-3) plays a role in cancer progression and is known for its pro-proliferative activity in gliomas. The anti-proliferative and cytotoxic effects of the GSK-3 inhibitor AZD2858 were assessed in relevant in vitro and in vivo glioma models to confirm GSK-3 as a suitable target for improved single agent or combination treatments. MATERIAL AND METHODS The immortalised cell line U251 and the patient derived cell lines GBM1 and GBM4 were used in in vitro studies including MTT, clonogenic survival, live cell imaging, immunofluorescence microscopy and flow cytometry to assess the cytotoxic and anti-proliferative effects of AZD2858. Observed anti-proliferative effects were investigated by microarray technology for the identification of target genes with known roles in cell proliferation. Clinical relevance of targeting GSK-3 with the inhibitor either for single agent or combination treatment strategies was determined by subcutaneous and orthotopic in vivo modelling. Whole mount mass spectroscopy was used to confirm drug penetration in orthotopic tumour models. RESULTS AZD2858 was cytotoxic at low micromolar concentrations and at sub-micromolar concentrations (0.01 - 1.0 μM) induced mitotic defects in all cell lines examined. Prolonged mitosis, centrosome disruption/duplication and cytokinetic failure leading to cell death featured prominently among the cell lines concomitant with an observed S-phase arrest. No cytotoxic or anti-proliferative effect was observed in normal human astrocytes. Analysis of the RNA microarray screen of AZD2858 treated glioma cells revealed the dysregulation of mitosis-associated genes including ASPM and PRC1, encoding proteins with known roles in cytokinesis. The anti-proliferative and cytotoxic effect of AZD2858 was also confirmed in both subcutaneous and orthotopic in vivo models. In addition, combination treatment with AZD2858 enhanced clinically relevant radiation doses leading to reduced tumour volume and improved survival in orthotopic in vivo models. CONCLUSION GSK-3 inhibition with the small molecule inhibitor AZD2858 led to cell death in glioma stem cells preventing normal centrosome function and promoting mitotic failure. Normal human astrocytes were not affected by treatment with the inhibitor at submicromolar concentrations. Drug penetration was observed alongside an enhanced effect of clinical radiotherapy doses in vivo. The reported aberrant centrosomal duplication may be a direct consequence of failed cytokinesis suggesting a role of GSK-3 in regulation of mitosis in glioma. GSK-3 is a promising target for combination treatment with radiation in GBM management and plays a role in mitosis-associated events in glioma biology.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4388 ◽  
Author(s):  
Morak-Młodawska ◽  
Pluta ◽  
Latocha ◽  
Jeleń ◽  
Kuśmierz

A series of novel 1,2,3-triazole-diazphenothiazine hybrids was designed, synthesized, and evaluated for anticancer activity against four selected human tumor cell lines (SNB-19, Caco-2, A549, and MDA-MB231). The majority of the synthesized compounds exhibited significant potent activity against the investigated cell lines. Among them, compounds 1d and 4c showed excellent broad spectrum anticancer activity, with IC50 values ranging from 0.25 to 4.66 μM and 0.25 to 6.25 μM, respectively. The most promising compound 1d, possessing low cytotoxicity against normal human fibroblasts NHFF, was used for gene expression analysis using reverse transcription–quantitative real-time PCR (RT–qPCR). The expression of H3, TP53, CDKN1A, BCL-2, and BAX genes revealed that these compounds inhibited the proliferation in all cells (H3) and activated mitochondrial events of apoptosis (BAX/BCL-2).


Blood ◽  
1995 ◽  
Vol 85 (3) ◽  
pp. 675-684 ◽  
Author(s):  
K Pulford ◽  
N Lecointe ◽  
K Leroy-Viard ◽  
M Jones ◽  
D Mathieu-Mahul ◽  
...  

Rearrangement of the tal-1 gene (also known as SCL or TCL-5) occurs in at least 25% of T-cell acute lymphoblastic leukemias (T-ALLs) and results in the aberrant expression of tal-1 mRNA in the neoplastic cells. Also, tal-1 mRNA is constitutively expressed in erythroid precursors and megakaryocytes. This report describes a direct immunocytochemical study of the distribution and localization of TAL-1 protein in normal human tissues and cell lines using four monoclonal antibodies raised against recombinant TAL-1 proteins. One of these reagents recognizes a protein of 41 kD molecular weight in in vitro- translated TAL-1 proteins, two others recognize proteins of 39 and 41 kD molecular weight, and the fourth antibody also recognizes a TAL-1 protein of 22 kD in addition to the 39- and 41-kD proteins. These anti- TAL-1 antibodies label the nuclei of erythroid precursor cells and megakaryocytes in fetal liver and adult bone marrow. The punctate pattern of nuclear labeling suggests that TAL-1 may comprise part of a novel nuclear structure, similar to that recently found for the PML protein. The nuclei of T cell lines known to express mRNA encoding the full-length TAL-1 protein (eg, CCRF-CEM, RPMI 8402, and Jurkat) are also labeled. A study of normal human tissues (including thymus) showed labeling of smooth muscle, some tissue macrophages, and endothelial cells. TAL-1 protein is undetectable in other cell types. These reagents may play an important role in the diagnosis of T-ALL and could also be used in the context of lymphoma diagnosis on routinely fixed material.


Sign in / Sign up

Export Citation Format

Share Document