Ubiquitin gene expression in Dictyostelium is induced by heat and cold shock, cadmium, and inhibitors of protein synthesis

1988 ◽  
Vol 90 (1) ◽  
pp. 51-58 ◽  
Author(s):  
A. Muller-Taubenberger ◽  
J. Hagmann ◽  
A. Noegel ◽  
G. Gerisch

Ubiquitin is a highly conserved, multifunctional protein, which is implicated in the heat-shock response of eukaryotes. The differential expression of the multiple ubiquitin genes in Dictyostelium discoideum was investigated under various stress conditions. Growing D. discoideum cells express four major ubiquitin transcripts of sizes varying from 0.6 to 1.9 kb. Upon heat shock three additional ubiquitin mRNAs of 0.9, 1.2 and 1.4 kb accumulate within 30 min. The same three transcripts are expressed in response to cold shock or cadmium treatment. Inhibition of protein synthesis by cycloheximide leads to a particularly strong accumulation of the larger ubiquitin transcripts, which code for polyubiquitins. Possible mechanisms regulating the expression of ubiquitin transcripts upon heat shock and other stresses are discussed.

2013 ◽  
Vol 91 (1) ◽  
pp. 42-48 ◽  
Author(s):  
Sheila S. Teves ◽  
Steven Henikoff

Recent studies in transcriptional regulation using the Drosophila heat shock response system have elucidated many of the dynamic regulatory processes that govern transcriptional activation and repression. The classic view that the control of gene expression occurs at the point of RNA polymerase II (Pol II) recruitment is now giving way to a more complex outlook of gene regulation. Promoter chromatin dynamics coordinate with transcription factor binding to maintain the promoters of active genes accessible. For a large number of genes, the rate-limiting step in Pol II progression occurs during its initial elongation, where Pol II transcribes 30–50 bp and pauses for further signals. These paused genes have unique genic chromatin architecture and dynamics compared with genes where Pol II recruitment is rate limiting for expression. Further elongation of Pol II along the gene causes nucleosome turnover, a continuous process of eviction and replacement, which suggests a potential mechanism for Pol II transit along a nucleosomal template. In this review, we highlight recent insights into transcription regulation of the heat shock response and discuss how the dynamic regulatory processes involved at each transcriptional stage help to generate faithful yet highly responsive gene expression.


2002 ◽  
Vol 205 (20) ◽  
pp. 3231-3240 ◽  
Author(s):  
Bradley A. Buckley ◽  
Gretchen E. Hofmann

SUMMARYThe intracellular build-up of thermally damaged proteins following exposure to heat stress results in the synthesis of a family of evolutionarily conserved proteins called heat shock proteins (Hsps) that act as molecular chaperones, protecting the cell against the aggregation of denatured proteins. The transcriptional regulation of heat shock genes by heat shock factor 1(HSF1) has been extensively studied in model systems, but little research has focused on the role HSF1 plays in Hsp gene expression in eurythermal organisms from broadly fluctuating thermal environments. The threshold temperature for Hsp induction in these organisms shifts with the recent thermal history of the individual but the mechanism by which this plasticity in Hsp induction temperature is achieved is unknown. We examined the effect of thermal acclimation on the heat-activation of HSF1 in the eurythermal teleost Gillichthys mirabilis. After a 5-week acclimation period (at 13, 21 or 28°C) the temperature of HSF1 activation was positively correlated with acclimation temperature. HSF1 activation peaked at 27°C in fish acclimated to 13°C, at 33°C in the 21°C group, and at 36°C in the 28°C group. Concentrations of both HSF1 and Hsp70 in the 28°C group were significantly higher than in the colder acclimated fish. Plasticity in HSF1 activation may be important to the adjustable nature of the heat shock response in eurythermal organisms and the environmental control of Hsp gene expression.


1998 ◽  
Vol 26 (Supplement) ◽  
pp. 39A ◽  
Author(s):  
Onsy Ayad ◽  
James Stark ◽  
Hector R. Wong

2002 ◽  
Vol 184 (24) ◽  
pp. 6845-6858 ◽  
Author(s):  
Lixuan Huang ◽  
Michael P. McCluskey ◽  
Hao Ni ◽  
Robert A. LaRossa

ABSTRACT We developed a transcript profiling methodology to elucidate expression patterns of the cyanobacterium Synechocystis sp. strain PCC 6803 and used the technology to investigate changes in gene expression caused by irradiation with either intermediate-wavelength UV light (UV-B) or high-intensity white light. Several families of transcripts were altered by UV-B treatment, including mRNAs specifying proteins involved in light harvesting, photosynthesis, photoprotection, and the heat shock response. In addition, UV-B light induced the stringent response in Synechocystis, as indicated by the repression of ribosomal protein transcripts and other mRNAs involved in translation. High-intensity white light- and UV-B-mediated expression profiles overlapped in the down-regulation of photosynthesis genes and induction of heat shock response but differed in several other transcriptional processes including those specifying carbon dioxide uptake and fixation, the stringent response, and the induction profile of the high-light-inducible proteins. These two profile comparisons not only corroborated known physiological changes but also suggested coordinated regulation of many pathways, including synchronized induction of D1 protein recycling and a coupling between decreased phycobilisome biosynthesis and increased phycobilisome degradation. Overall, the gene expression profile analysis generated new insights into the integrated network of genes that adapts rapidly to different wavelengths and intensities of light.


2000 ◽  
Vol 203 (15) ◽  
pp. 2331-2339 ◽  
Author(s):  
G.E. Hofmann ◽  
B.A. Buckley ◽  
S. Airaksinen ◽  
J.E. Keen ◽  
G.N. Somero

The heat-shock response, the enhanced expression of one or more classes of molecular chaperones termed heat-shock proteins (hsps) in response to stress induced by high temperatures, is commonly viewed as a ‘universal’ characteristic of organisms. We examined the occurrence of the heat-shock response in a highly cold-adapted, stenothermal Antarctic teleost fish, Trematomus bernacchii, to determine whether this response has persisted in a lineage that has encountered very low and stable temperatures for at least the past 14–25 million years. The patterns of protein synthesis observed in in vivo metabolic labelling experiments that involved injection of (35)S-labelled methionine and cysteine into whole fish previously subjected to a heat stress of 10 degrees C yielded no evidence for synthesis of any size class of heat-shock protein. Parallel in vivo labelling experiments with isolated hepatocytes similarly showed significant amounts of protein synthesis, but no indication of enhanced expression of any class of hsp. The heavy metal cadmium, which is known to induce synthesis of hsps, also failed to alter the pattern of proteins synthesized in hepatocytes. Although stress-induced chaperones could not be detected under any of the experimental condition used, solid-phase antibody (western) analysis revealed that a constitutively expressed 70 kDa chaperone was present in this species, as predicted on the basis of requirements for chaperoning during protein synthesis. Amounts of the constitutively expressed 70 kDa chaperone increased in brain, but not in gill, during 22 days of acclimation to 5 degrees C. The apparent absence of a heat-shock response in this highly stenothermal species is interpreted as an indication that a physiological capacity observed in almost all other organisms has been lost as a result of the absence of positive selection during evolution at stable sub-zero temperatures. Whether the loss of the heat-shock response is due to dysfunctional genes for inducible hsps (loss of open reading frames or functional regulatory regions), unstable messenger RNAs, the absence of a functional heat-shock factor or some other lesion remains to be determined.


2020 ◽  
Author(s):  
Ilhan Cem Duru ◽  
Anne Ylinen ◽  
Sergei Belanov ◽  
Alan Ávila Pulido ◽  
Lars Paulin ◽  
...  

Abstract Background: Psychrotrophic lactic acid bacteria (LAB) species are the dominant species in microbiota of cold-stored modified-atmosphere-packaged food products and they are the main cause of food spoilage. But still, the cold- and heat-shock response of the spoilage-related psychrotrophic lactic acid bacteria has not been studied. Here, to study cold- and heat-shock response of spoilage lactic acid bacteria, we performed time-series RNA-seq for Le. gelidum, Lc. piscium and P. oligofermentans using temperatures of 0 °C, 4 °C, 14 °C, 25 °C and 28 °C. Results: We showed that the cold-shock protein A (cspA) gene was the main cold-shock protein gene among cold-shock protein genes in all three species. Our results indicated DEAD-box RNA helicase genes (cshA, cshB) play a critical role in cold-shock response in psychrotrophic LAB. In addition, several RNase genes were also involved in cold-shock response in Lc. piscium and P. oligofermentans. Moreover, gene network inference analysis provided candidate genes involved in cold-shock response. Ribosomal proteins, tRNA modification, rRNA modification, and ABC and efflux MFS transporter genes clustered with cold-shock response genes in all three species, which was a strong indication that these genes would be part of cold-shock response machinery. Heat-shock treatment caused upregulation of Clp protease and chaperone genes in all three species and we were able to identify transcription binding site motifs for heat-shock response genes in Le. gelidum and Lc. piscium. Finally, we showed that food spoilage-related genes were upregulated at cold temperatures. Conclusions: The results of this study provide new insights into a better understanding of the cold- and heat-shock response in psychrotrophic LAB. In addition, candidate genes involved in cold- and heat-shock response predicted using gene network inference analysis could be used as a target for future studies.


Genetics ◽  
1990 ◽  
Vol 124 (4) ◽  
pp. 949-955
Author(s):  
V K Mohl ◽  
G D Bennett ◽  
R H Finnell

Abstract Lymphocytes from adult mice bearing a known difference in genetic susceptibility to teratogen-induced exencephaly (SWV/SD, and DBA/2J) were evaluated for changes in protein synthesis following an in vivo heat treatment. Particular attention was paid to changes indicative of the heat shock response, a highly conserved response to environmental insult consisting of induction of a few, highly conserved proteins with simultaneous decreases in normal protein synthesis. The duration of heat shock protein induction in lymphocytes was found to be increased by 1 hr in the teratogen-sensitive SWV/SD strain as compared to the resistant DBA/2J strain. Densitometric analysis revealed a significant decrease in the relative synthesis of at least two non-heat shock proteins (36 kD and 45 kD) in the SWV/SD lymphocytes as compared to DBA/2J cells. The increased sensitivity of protein synthesis to hyperthermia in the SWV/SD lymphocytes were lost in the F1 progeny of reciprocal crosses between SWV/SD and DBA/2J mouse strains. Sensitivity to hyperthermia-induced exencephaly is recessive to resistance in these crosses. The relationship between altered protein synthesis and teratogen susceptibility is discussed.


Sign in / Sign up

Export Citation Format

Share Document