scholarly journals Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae)

2000 ◽  
Vol 203 (15) ◽  
pp. 2331-2339 ◽  
Author(s):  
G.E. Hofmann ◽  
B.A. Buckley ◽  
S. Airaksinen ◽  
J.E. Keen ◽  
G.N. Somero

The heat-shock response, the enhanced expression of one or more classes of molecular chaperones termed heat-shock proteins (hsps) in response to stress induced by high temperatures, is commonly viewed as a ‘universal’ characteristic of organisms. We examined the occurrence of the heat-shock response in a highly cold-adapted, stenothermal Antarctic teleost fish, Trematomus bernacchii, to determine whether this response has persisted in a lineage that has encountered very low and stable temperatures for at least the past 14–25 million years. The patterns of protein synthesis observed in in vivo metabolic labelling experiments that involved injection of (35)S-labelled methionine and cysteine into whole fish previously subjected to a heat stress of 10 degrees C yielded no evidence for synthesis of any size class of heat-shock protein. Parallel in vivo labelling experiments with isolated hepatocytes similarly showed significant amounts of protein synthesis, but no indication of enhanced expression of any class of hsp. The heavy metal cadmium, which is known to induce synthesis of hsps, also failed to alter the pattern of proteins synthesized in hepatocytes. Although stress-induced chaperones could not be detected under any of the experimental condition used, solid-phase antibody (western) analysis revealed that a constitutively expressed 70 kDa chaperone was present in this species, as predicted on the basis of requirements for chaperoning during protein synthesis. Amounts of the constitutively expressed 70 kDa chaperone increased in brain, but not in gill, during 22 days of acclimation to 5 degrees C. The apparent absence of a heat-shock response in this highly stenothermal species is interpreted as an indication that a physiological capacity observed in almost all other organisms has been lost as a result of the absence of positive selection during evolution at stable sub-zero temperatures. Whether the loss of the heat-shock response is due to dysfunctional genes for inducible hsps (loss of open reading frames or functional regulatory regions), unstable messenger RNAs, the absence of a functional heat-shock factor or some other lesion remains to be determined.

2020 ◽  
Vol 21 (6) ◽  
pp. 2063
Author(s):  
Mooud Amirkavei ◽  
Marja Pitkänen ◽  
Ossi Kaikkonen ◽  
Kai Kaarniranta ◽  
Helder André ◽  
...  

The induction of heat shock response in the macula has been proposed as a useful therapeutic strategy for retinal neurodegenerative diseases by promoting proteostasis and enhancing protective chaperone mechanisms. We applied transpupillary 1064 nm long-duration laser heating to the mouse (C57Bl/6J) fundus to examine the heat shock response in vivo. The intensity and spatial distribution of heat shock protein (HSP) 70 expression along with the concomitant probability for damage were measured 24 h after laser irradiation in the mouse retinal pigment epithelium (RPE) as a function of laser power. Our results show that the range of heating powers for producing heat shock response while avoiding damage in the mouse RPE is narrow. At powers of 64 and 70 mW, HSP70 immunostaining indicates 90 and 100% probability for clearly elevated HSP expression while the corresponding probability for damage is 20 and 33%, respectively. Tunel staining identified the apoptotic regions, and the estimated 50% damaging threshold probability for the heating (ED50) was ~72 mW. The staining with Bestrophin1 (BEST1) demonstrated RPE cell atrophy with the most intense powers. Consequently, fundus heating with a long-duration laser provides an approachable method to develop heat shock-based therapies for the RPE of retinal disease model mice.


Genetics ◽  
1990 ◽  
Vol 124 (4) ◽  
pp. 949-955
Author(s):  
V K Mohl ◽  
G D Bennett ◽  
R H Finnell

Abstract Lymphocytes from adult mice bearing a known difference in genetic susceptibility to teratogen-induced exencephaly (SWV/SD, and DBA/2J) were evaluated for changes in protein synthesis following an in vivo heat treatment. Particular attention was paid to changes indicative of the heat shock response, a highly conserved response to environmental insult consisting of induction of a few, highly conserved proteins with simultaneous decreases in normal protein synthesis. The duration of heat shock protein induction in lymphocytes was found to be increased by 1 hr in the teratogen-sensitive SWV/SD strain as compared to the resistant DBA/2J strain. Densitometric analysis revealed a significant decrease in the relative synthesis of at least two non-heat shock proteins (36 kD and 45 kD) in the SWV/SD lymphocytes as compared to DBA/2J cells. The increased sensitivity of protein synthesis to hyperthermia in the SWV/SD lymphocytes were lost in the F1 progeny of reciprocal crosses between SWV/SD and DBA/2J mouse strains. Sensitivity to hyperthermia-induced exencephaly is recessive to resistance in these crosses. The relationship between altered protein synthesis and teratogen susceptibility is discussed.


1990 ◽  
Vol 55 (1) ◽  
pp. 1-6 ◽  
Author(s):  
John M. Delaney

SummaryAn adenyl cyclase deletion mutant (cya) ofE. colifailed to exhibit a heat-shock response even after 30 min at 42 °C. Under these conditions, heat-shock protein synthesis was induced by 10 min in the wild-type strain. These results suggest that synthesis of heat-shock proteins inE. colirequires thecyagene. This hypothesis is supported by the finding that a presumptive cyclic AMP receptor protein (CRP) binding site exists within the promotor region of theE. coli htp Rgene. In spite of the absence of heat-shock protein synthesis, when treated at 50 °C, thecyamutant is relatively more heat resistant than wild type. Furthermore, when heat shocked at 42 °C prior to exposure at 50 °C, thecyamutant developed thermotolerance. These results suggest that heat-shock protein synthesis is not essential for development of thermotolerance inE. coli.


Genome ◽  
1989 ◽  
Vol 32 (4) ◽  
pp. 676-686 ◽  
Author(s):  
B. B. Nath ◽  
S. C. Lakhotia

Examination of heat shock induced transcriptional activity in salivary gland polytene nuclei of a tropical Chironomus, C. striatipennis, revealed nine heat-shock puffs. In 24 °C-reared larvae optimal heat-shock response was seen at 39 °C, while a 41 °C shock was nearly lethal. In a population grown under natural conditions of seasonal variations, the heat-shock response was dependent upon the current ambient temperature. In summer months, response to 39 °C was variable, from complete to no induction of heat-shock puffs in different cells. In control glands from larvae growing at 33–36 °C in summer, heat-shock genes were not active, although in 24 °C-reared larvae, 33 °C already caused partial induction. Unlike the 24 °C-reared population, a 41 °C shock to summer larvae was not lethal. [35S]Methionine-labelled protein synthesis pattern in the summer larvae revealed appreciable accumulation of heat-shock polypeptides in control glands, which possibly autoregulates their further induction and also explains the better thermotolerance of these larvae. In a developmental study of a 24 °C-reared population, some heat-shock polypeptides were found to be commonly synthesized at 39 °C in all the tissues (salivary glands of larvae; Malpighian tubules of larvae, pupae, and adult; adult ovaries), while other heat-shock polypeptides showed apparent tissue and (or) developmental stage specificity. Heat shock protein 70 was most abundantly synthesized in all the tissues examined.Key words: temperature shock, thermotolerance, heat-shock polypeptides, polytene chromosomes, puffs.


Polar Biology ◽  
2007 ◽  
Vol 31 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Melody S. Clark ◽  
Keiron P. P. Fraser ◽  
Gavin Burns ◽  
Lloyd S. Peck

2015 ◽  
Vol 13 (16) ◽  
pp. 4627-4631 ◽  
Author(s):  
Y. Wang ◽  
S. R. McAlpine

The cellular protection mechanism, the heat shock response, is only activated by classical heat shock 90 inhibitors (Hsp90) that “target” the N-terminus of the protein, but not by those that modulate the C-terminus.


1988 ◽  
Vol 90 (1) ◽  
pp. 51-58 ◽  
Author(s):  
A. Muller-Taubenberger ◽  
J. Hagmann ◽  
A. Noegel ◽  
G. Gerisch

Ubiquitin is a highly conserved, multifunctional protein, which is implicated in the heat-shock response of eukaryotes. The differential expression of the multiple ubiquitin genes in Dictyostelium discoideum was investigated under various stress conditions. Growing D. discoideum cells express four major ubiquitin transcripts of sizes varying from 0.6 to 1.9 kb. Upon heat shock three additional ubiquitin mRNAs of 0.9, 1.2 and 1.4 kb accumulate within 30 min. The same three transcripts are expressed in response to cold shock or cadmium treatment. Inhibition of protein synthesis by cycloheximide leads to a particularly strong accumulation of the larger ubiquitin transcripts, which code for polyubiquitins. Possible mechanisms regulating the expression of ubiquitin transcripts upon heat shock and other stresses are discussed.


Sign in / Sign up

Export Citation Format

Share Document