Sheaths of the Motor Axons of the Crab Carcinus

1964 ◽  
Vol s3-105 (70) ◽  
pp. 175-181
Author(s):  
G. A. HORRIDGE ◽  
R. A. CHAPMAN

In crab leg nerves, the largest axons, which are the motor axons usually isolated for physiological experiments, have a sheath structure which is different from that in medium sized and smaller axons of the same nerve or of any other described nerves. Axons with a diameter over 20 µ have (a) an outer sheath, about 5µ thick, of wellspaced layers of alternating glial cell cytoplasm and extracellular fibrous material, formed from fewer cells than there are layers, and (b) an inner sheath of elongated cells which creep along the axon longitudinally and interdigitate where they meet, as seen 2 or 3 times round the outside of the membranes of axons in cross-section. Therefore, possible channels between inner glial cells are elongated and few. On these structural grounds, together with physiological evidence, they seem unlikely to be preferred pathways of diffusion of ions in crab axons. Smaller axons have simple sheaths; some occur in groups within a fibrous sheath; the thinnest axons frequently occur in bundles and have no glial cell membrane in contact with them.

2009 ◽  
Vol 134 (2) ◽  
pp. 115-127 ◽  
Author(s):  
Jochen Müller ◽  
Daniel Reyes-Haro ◽  
Tatjyana Pivneva ◽  
Christiane Nolte ◽  
Roland Schaette ◽  
...  

Glial cell processes are part of the synaptic structure and sense spillover of transmitter, while some glial cells can even receive direct synaptic input. Here, we report that a defined type of glial cell in the medial nucleus of the trapezoid body (MNTB) receives excitatory glutamatergic synaptic input from the calyx of Held (CoH). This giant glutamatergic terminal forms an axosomatic synapse with a single principal neuron located in the MNTB. The NG2 glia, as postsynaptic principal neurons, establish synapse-like structures with the CoH terminal. In contrast to the principal neurons, which are known to receive excitatory as well as inhibitory inputs, the NG2 glia receive mostly, if not exclusively, α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor–mediated evoked and spontaneous synaptic input. Simultaneous recordings from neurons and NG2 glia indicate that they partially receive synchronized spontaneous input. This shows that an NG2+ glial cell and a postsynaptic neuron share presynaptic terminals.


2016 ◽  
Vol 74 (10) ◽  
pp. 849-854
Author(s):  
Paulo Victor Sgobbi de Souza ◽  
Wladimir Bocca Vieira de Rezende Pinto ◽  
Flávio Moura Rezende Filho ◽  
Acary Souza Bulle Oliveira

ABSTRACT Motor neuron disease is one of the major groups of neurodegenerative diseases, mainly represented by amyotrophic lateral sclerosis. Despite wide genetic and biochemical data regarding its pathophysiological mechanisms, motor neuron disease develops under a complex network of mechanisms not restricted to the unique functions of the alpha motor neurons but which actually involve diverse functions of glial cell interaction. This review aims to expose some of the leading roles of glial cells in the physiological mechanisms of neuron-glial cell interactions and the mechanisms related to motor neuron survival linked to glial cell functions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marie J. Pietrowski ◽  
Amr Ahmed Gabr ◽  
Stanislav Kozlov ◽  
David Blum ◽  
Annett Halle ◽  
...  

Purinergic signaling regulates neuronal and glial cell functions in the healthy CNS. In neurodegenerative diseases, purinergic signaling becomes dysregulated and can affect disease-associated phenotypes of glial cells. In this review, we discuss how cell-specific expression patterns of purinergic signaling components change in neurodegeneration and how dysregulated glial purinergic signaling and crosstalk may contribute to disease pathophysiology, thus bearing promising potential for the development of new therapeutical options for neurodegenerative diseases.


Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3735-3743 ◽  
Author(s):  
V. Van De Bor ◽  
R. Walther ◽  
A. Giangrande

In flies, the choice between neuronal and glial fates depends on the asymmetric division of multipotent precursors, the neuroglioblast of the central nervous system and the IIb precursor of the sensory organ lineage. In the central nervous system, the choice between the two fates requires asymmetric distribution of the glial cell deficient/glial cell missing (glide/gcm) RNA in the neuroglioblast. Preferential accumulation of the transcript in one of the daughter cells results in the activation of the glial fate in that cell, which becomes a glial precursor. Here we show that glide/gcm is necessary to induce glial differentiation in the peripheral nervous system. We also present evidence that glide/gcm RNA is not necessary to induce the fate choice in the peripheral multipotent precursor. Indeed, glide/gcm RNA and protein are first detected in one daughter of IIb but not in IIb itself. Thus, glide/gcm is required in both central and peripheral glial cells, but its regulation is context dependent. Strikingly, we have found that only subsets of sensory organs are gliogenic and express glide/gcm. The ability to produce glial cells depends on fixed, lineage related, cues and not on stochastic decisions. Finally, we show that after glide/gcm expression has ceased, the IIb daughter migrates and divides symmetrically to produce several mature glial cells. Thus, the glide/gcm-expressing cell, also called the fifth cell of the sensory organ, is indeed a glial precursor. This is the first reported case of symmetric division in the sensory organ lineage. These data indicate that the organization of the fly peripheral nervous system is more complex than previously thought.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 438 ◽  
Author(s):  
Andrew P. Voigt ◽  
Elaine Binkley ◽  
Miles J. Flamme-Wiese ◽  
Shemin Zeng ◽  
Adam P. DeLuca ◽  
...  

Degenerative diseases affecting retinal photoreceptor cells have numerous etiologies and clinical presentations. We clinically and molecularly studied the retina of a 70-year-old patient with retinal degeneration attributed to autoimmune retinopathy. The patient was followed for 19 years for progressive peripheral visual field loss and pigmentary changes. Single-cell RNA sequencing was performed on foveal and peripheral retina from this patient and four control patients, and cell-specific gene expression differences were identified between healthy and degenerating retina. Distinct populations of glial cells, including astrocytes and Müller cells, were identified in the tissue from the retinal degeneration patient. The glial cell populations demonstrated an expression profile consistent with reactive gliosis. This report provides evidence that glial cells have a distinct transcriptome in the setting of human retinal degeneration and represents a complementary clinical and molecular investigation of a case of progressive retinal disease.


Author(s):  
F. W. Carter

In a recent communication to the Society, the author referred to cable-sheath losses, and gave formulae for computing them in certain cases. These appertained to power cables in which were comprised a group of conductors, arranged symmetrically and encased in a single conducting sheath. In some distribution systems, however, the conductors for the several phases are encased in separate lead sheaths, which are either laid in proximity as separate cables, or grouped and comprehended in an outer sheath. The analysis previously given does not include such cases directly. Moreover, it is common practice either to lay the elementary cables with sheaths in contact, or to bond the sheaths together at the ends of suitable sections, in order to prevent differences of potential between them; and, when this is done, a circulating current flows in the circuit of the sheaths and bonds, sufficient to maintain equality of potential between the several sheaths. This current, to which reference was made in the former paper, is additional to the eddy current discussed therein, the integral of which over the cross section of the sheath is zero. It is for convenience here referred to as the “circulating current,” to distinguish it from the “eddy current,” although there is no such distinction between them as the names imply.


The glial tissue in Planorbis ganglia surrounds and ensheaths the neurons. The majority of the glial processes are interwoven around the neuronal perikarya and their major axon branches. Glial cell processes form a layer between the blood and nerve perikarya, but this does not significantly interfere with the movements of many small molecules in and out of the tissue. Such movements can occur paracellularly, through the extracellular spaces, since there are no occluding junctions between the cells.


Glia ◽  
2008 ◽  
Vol 56 (6) ◽  
pp. 597-610 ◽  
Author(s):  
Patrice E. Fort ◽  
Abdoulaye Sene ◽  
Thomas Pannicke ◽  
Michel J. Roux ◽  
Valerie Forster ◽  
...  

Neuroscience ◽  
2003 ◽  
Vol 122 (1) ◽  
pp. 229-235 ◽  
Author(s):  
C Harada ◽  
T Harada ◽  
H.-M.A Quah ◽  
F Maekawa ◽  
K Yoshida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document