Further Information Concerning the Envelopes Surrounding Dipteran Eggs

1964 ◽  
Vol s3-105 (70) ◽  
pp. 209-212
Author(s):  
R. C. KING

A centripetal migration of follicle cells, which results in a separation of egg and nurse chambers, occurs in higher dipterans like Drosophila melanogaster but not in lower dipterans like Anopheles maculipennis. In Anopheles and Drosophila, while the vitelline membrane can be secreted in the absence of the oocyte, the follicle cells must be present. This suggests that the follicle cell is the governing agent in the synthesis of the vitelline membrane. The envelopes of Drosophila embryos differ from those surrounding ovarian eggs in that a membrane about 0.04 µ thick lies directly outside the vitelline membrane. This thin layer is thought to represent a waterproofing wax which forms once the egg leaves the ovariole.

1986 ◽  
Vol 64 (11) ◽  
pp. 2509-2519 ◽  
Author(s):  
Flora E. Zarani ◽  
Lukas H. Margaritis

The micropylar apparatus in Drosophila melanogaster consists of two parts. The inner part is a protrusion of vitelline membrane, whereas the outer part is a chorionic protrusion containing a canal, through which the spermatozoon enters. In the formation of the micropylar apparatus two follicle cell subpopulations are involved: the border cells, i.e., a group of 9 follicle cells, and the peripheral cells (about 36 cells). The morphogenesis of the micropyle starts at stage 10B, when the border cells secrete the paracrystalline region of the vitelline membrane. The micropylar canal (length 7 μm, diameter 0.7 μm) and the pocket that penetrates within the paracrystalline structure are moulded by two border cell projections, full of microtubules. The formation of the micropyle terminates at stage 14B, when its chorionic part is completed and the border cell projections degenerate. The structure of the micropyle in fertilized and unfertilized laid eggs differs from the mature (stage 14B) egg in that the vitelline membrane is modified and appears homogeneous as in the rest of the eggshell. These transformations seem to be unrelated to sperm entry.


1963 ◽  
Vol s3-104 (67) ◽  
pp. 297-320
Author(s):  
R. C. KING ◽  
ELIZABETH A. KOCH

Studies are described of the ultrastructure of the follicle cells which invest the oocyte of Drosophila melanogaster at the time of vitelline membrane formation. Of particular interest are organelles made up of endoplasmic reticulum organized into a husk of concentric lamellae which surround lipidal droplets. These epithelial bodies are seen only at the time the vitelline membrane is being formed, and it is assumed therefore that the lipidal material of the epithelial body may be utilized somehow in the fabrication of the vitelline membrane. Cytochemical studies have shown this membrane to contain at least 5 classes of compounds; a protein, two lipids (which may be distinguished by differences in their resistance to extraction by various solvents), and 2 polysaccharides (1 neutral and 1 acidic). Studies were made of vitelline membrane formation in the ovaries of flies homozygous for either of 2 recessive, female-sterile genes (tiny and female sterile). In the case of the ty mutation vitelline membrane material is sometimes secreted between follicle and nurse cells, while in the mutant fes vitelline membrane is observed in rare instances to be secreted between follicle cells and an adjacent layer of tumour cells. In the latter case the vitelline membrane shows altered cytochemical properties. The fact that vitelline membrane can be secreted by follicle cells not adjacent to an oocyte demonstrates that it is the follicle cell rather than the oocyte that plays the major role in the secretion of the precursor material of the vitelline membrane. Subsequently the follicle cells secrete the egg-shell, or chorion, which is subdivided into a dense, compartmented, inner endochorion, and a pale, outer exochorion. A description is given of the ultrastructure of the follicle cells during the secretion of the endochorion and the exochorion. The endochorion contains a protein, a polysaccharide, and a lipid, all of which may be distinguished cytochemically from the vitelline membrane compounds. The exochorion contains large amounts of acidic mucopolysaccharides. Specialized follicle cells form the micropylar apparatus and the chorionic appendages. The formation of the chorion and chorionic appendages is discussed in the light of information gained from abnormalities of the chorions and chorionic appendages seen in ty and fs 2.1 oocytes. Subsequent to the time the egg leaves the ovariole a layer of waterproofing wax is secreted between the vitelline membrane and the chorion.


Development ◽  
1965 ◽  
Vol 13 (2) ◽  
pp. 215-233
Author(s):  
Ruth Bellairs

In the adult hen each oöcyte is surrounded by a capsule of follicle cells and all the raw materials that enter the oöcyte must pass through this capsule. It is not surprising, therefore, that the morphological relationships between the follicle and the oöcyte are of a highly specialized nature. Several workers have studied them, mainly by light microscopy, but their findings have not been unanimous, largely because of difficulties in resolving fine details. For instance, although it has frequently been suggested that certain structures pass from the follicle cell into the oöcyte, these structures have been interpreted by different authors as Golgi bodies, as mitochondria or as fat drops. Similarly, there have been several different theories about the relationship between the cell membrane of the oöcyte, the zona radiata and the vitelline membrane.


1993 ◽  
Vol 155 (2) ◽  
pp. 558-568 ◽  
Author(s):  
Yonggu Lin ◽  
Martha T. Hamblin ◽  
Marten J. Edwards ◽  
Carolina Barillas-Mury ◽  
Michael R. Kanost ◽  
...  

1983 ◽  
Vol 61 (7) ◽  
pp. 826-831 ◽  
Author(s):  
T. T. Ilenchuk ◽  
K. G. Davey

A comparison has been made of the effects of juvenile hormone (JH) on the binding characteristics for ouabain of microsomes prepared from brain and from cells of the follicular epithelium surrounding previtellogenic or vitellogenic oocytes in Rhodnius. JH has no effect on the binding of ouabain to brain microsomes and decreases the Kd, but does not alter the Bmax for previtellogenic follicle cells. For vitellogenic follicle cells, Scatchard analysis reveals a curvilinear relationship, which is interpreted as indicating that a new population of JH-sensitive ouabain-binding sites develops as the follicle cell enters vitellogenesis. These results are related to earlier data obtained on the effect of JH on ATPase activity, volume changes in isolated follicle cells, and the development of spaces between the cells of the follicular epithelium.


2001 ◽  
Vol 114 (15) ◽  
pp. 2819-2829 ◽  
Author(s):  
Davide Andrenacci ◽  
Filippo M. Cernilogar ◽  
Carlo Taddei ◽  
Deborah Rotoli ◽  
Valeria Cavaliere ◽  
...  

A study was made of the localization and assembly of the VM32E protein, a putative vitelline membrane component of the Drosophila eggshell. The results highlight some unique features of this protein compared with the other proteins of the same gene family. At the time of its synthesis (stage 10), the VM32E protein is not detectable in polar follicle cells. However, it is able to move in the extracellular space around the oocyte and, by stage 11 is uniformly distributed in the vitelline membrane. During the terminal stages of oogenesis the VM32E protein is partially released from the vitelline membrane and becomes localized in the endochorion layer also. By analyzing transgenic flies carrying variously truncated VM32E proteins, we could identify the protein domains required for the proper assembly of the VM32E protein in the eggshell. The highly conserved vitelline membrane domain is implicated in the early interactions with other components and is required for cross-linking VM32E protein in the vitelline membrane. The terminal carboxylic domain is necessary for localization to the endochorion layer. Protein with the C-end domain deleted is localized solely to the vitelline membrane and cross-linked only in laid eggs, as occurs for the other vitelline membrane proteins.


1991 ◽  
Vol 100 (1) ◽  
pp. 167-171
Author(s):  
D.A. Diss ◽  
B.D. Greenstein

We describe here conditions for the detection of insulin binding sites on Xenopus laevis oocytes. The binding of 125I-labelled insulin displayed sigmoidal behaviour, which is characteristic of the binding relationship between insulin and its receptor. Resolution of the resulting curvilinear Scatchard plot into two components revealed KD values of 8.86 × 10(−10) +/− 1.9 × 10(−10) and 5.32 × 10(−9) +/− 2.4 × 10(−9) M and n values of 9.7 × 10(7) +/− 0.4 × 10(7) and 3.3 × 10(8) +/− 0.5 × 10(8) binding sites per oocyte, respectively. The possibility cannot be excluded, however, that receptors for IGF-1 were also being detected. Also described are conditions for the rapid and efficient removal of all tissues surrounding the oocyte, including the vitelline membrane. We could not detect any specific 125I-labelled insulin binding to oocytes that had their follicle cells or vitelline membrane removed and this was not due to the enzymic treatment used in the process. Microinjection of oocytes without follicular layers did not result in the appearance of any detectable insulin binding sites, which were, however, observed if oocytes were first stripped of the vitelline membrane. We suggest that oocytes may possess endogenous insulin receptors on their surface in numbers of the same order of magnitude as those present on somatic cells. The removal of tissues surrounding the oocyte should facilitate studies aimed at determining functional interactions of the various cell types during oocyte development and for studying insulin receptors on the oocyte-follicular cell complex.


Development ◽  
1987 ◽  
Vol 100 (1) ◽  
pp. 1-12 ◽  
Author(s):  
G.M. Technau

The mechanisms leading to the commitment of a cell to a particular fate or to restrictions in its developmental potencies represent a problem of central importance in developmental biology. Both at the genetic and at the molecular level, studies addressing this topic using the fruitfly Drosophila melanogaster have advanced substantially, whereas, at the cellular level, experimental techniques have been most successfully applied to organisms composed of relatively large and accessible cells. The combined application of the different approaches to one system should improve our understanding of the process of commitment as a whole. Recently, a method has been devised to study cell lineage in Drosophila embryos at the single cell level. This method has been used to analyse the lineages, as well as the state of commitment of single cell progenitors from various ectodermal, mesodermal and endodermal anlagen and of the pole cells. The results obtained from a clonal analysis of wild-type larval structures are discussed in this review.


Development ◽  
1998 ◽  
Vol 125 (2) ◽  
pp. 191-200 ◽  
Author(s):  
A. Sapir ◽  
R. Schweitzer ◽  
B.Z. Shilo

Previous work has demonstrated a role for the Drosophila EGF receptor (Torpedo/DER) and its ligand, Gurken, in the determination of anterioposterior and dorsoventral axes of the follicle cells and oocyte. The roles of DER in establishing the polarity of the follicle cells were examined further, by following the expression of DER-target genes. One class of genes (e.g. kekon) is induced by the DER pathway at all stages. Broad expression of kekon at the stage in which the follicle cells migrate posteriorly over the oocyte, demonstrates the capacity of the pathway to pattern all follicle cells except the ventral-most rows. This may provide the spatial coordinates for the ventral-most follicle cell fates. A second group of target genes (e.g. rhomboid (rho)) is induced only at later stages of oogenesis, and may require additional inputs by signals emanating from the anterior, stretch follicle cells. The function of Rho was analyzed by ectopic expression in the stretch follicle cells, and shown to induce a non-autonomous dorsalizing activity that is independent of Gurken. Rho thus appears to be involved in processing a DER ligand in the follicle cells, to pattern the egg chamber and allow persistent activation of the DER pathway during formation of the dorsal appendages.


Sign in / Sign up

Export Citation Format

Share Document