The role of sensory adaptation in the retina

1989 ◽  
Vol 146 (1) ◽  
pp. 39-62 ◽  
Author(s):  
S. B. Laughlin

Adaptation, a change in response to a sustained stimulus, is a widespread property of sensory systems, occurring at many stages, from the most peripheral energy-gathering structures to neural networks. Adaptation is also implemented at many levels of biological organization, from the molecule to the organ. Despite adaptation's diversity, it is fruitful to extract some unifying principles by considering well-characterized components of the insect visual system. A major function of adaptation is to increase the amount of sensory information an organism uses. The amount of information available to an organism is ultimately defined by its environment and its size. The amount of information collected depends upon the ways in which an organism samples and transduces signals. The amount of information that is used is further limited by internal losses during transmission and processing. Adaptation can increase information capture and reduce internal losses by minimizing the effects of physical and biophysical constraints. Optical adaptation mechanisms in compound eyes illustrate a common trade-off between energy (quantum catch) and acuity (sensitivity to changes in the distribution of energy). This trade-off can be carefully regulated to maximize the information gathered (i.e. the number of pictures an eye can reconstruct). Similar trade-offs can be performed neurally by area summation mechanisms. Light adaptation in photoreceptors introduces the roles played by cellular constraints in limiting the available information. Adaptation mechanisms prevent saturation and, by trading gain for temporal acuity, increase the rate of information uptake. By minimizing the constraint of nonlinear summation (imposed by membrane conductance mechanisms) a cell's sensitivity follows the Weber-Fechner law. Thus, a computationally advantageous transformation is generated in response to a cellular constraint. The synaptic transfer of signals from photoreceptors to second-order neurones emphasizes that the cellular constraints of nonlinearity, noise and dynamic range limit the transmission of information from cell to cell. Synaptic amplification is increased to reduce the effects of noise but this resurrects the constraint of dynamic range. Adaptation mechanisms, both confined to single synapses and distributed in networks, remove spatially and temporally redundant signal components to help accommodate more information within a single cell. The net effect is a computationally advantageous removal of the background signal. Again, the cellular constraints on information transfer have dictated a computationally advantageous operation.

2010 ◽  
Vol 365 (1540) ◽  
pp. 593-603 ◽  
Author(s):  
Armin P. Moczek

Phenotypic plasticity in general and polyphenic development in particular are thought to play important roles in organismal diversification and evolutionary innovation. Focusing on the evolutionary developmental biology of insects, and specifically that of horned beetles, I explore the avenues by which phenotypic plasticity and polyphenic development have mediated the origins of novelty and diversity. Specifically, I argue that phenotypic plasticity generates novel targets for evolutionary processes to act on, as well as brings about trade-offs during development and evolution, thereby diversifying evolutionary trajectories available to natural populations. Lastly, I examine the notion that in those cases in which phenotypic plasticity is underlain by modularity in gene expression, it results in a fundamental trade-off between degree of plasticity and mutation accumulation. On one hand, this trade-off limits the extent of plasticity that can be accommodated by modularity of gene expression. On the other hand, it causes genes whose expression is specific to rare environments to accumulate greater variation within species, providing the opportunity for faster divergence and diversification between species, compared with genes expressed across environments. Phenotypic plasticity therefore contributes to organismal diversification on a variety of levels of biological organization, thereby facilitating the evolution of novel traits, new species and complex life cycles.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jessica Fiebelkow ◽  
André Guendel ◽  
Beate Guendel ◽  
Nora Mehwald ◽  
Tomasz Jetka ◽  
...  

Abstract Background Cell-to-cell heterogeneity is an inherent feature of multicellular organisms and is central in all physiological and pathophysiological processes including cellular signal transduction. The cytokine IL-6 is an essential mediator of pro- and anti-inflammatory processes. Dysregulated IL-6-induced intracellular JAK/STAT signalling is associated with severe inflammatory and proliferative diseases. Under physiological conditions JAK/STAT signalling is rigorously controlled and timely orchestrated by regulatory mechanisms such as expression of the feedback-inhibitor SOCS3 and activation of the protein-tyrosine phosphatase SHP2 (PTPN11). Interestingly, the function of negative regulators seems not to be restricted to controlling the strength and timely orchestration of IL-6-induced STAT3 activation. Exemplarily, SOCS3 increases robustness of late IL-6-induced STAT3 activation against heterogenous STAT3 expression and reduces the amount of information transferred through JAK/STAT signalling. Methods Here we use multiplexed single-cell analyses and information theoretic approaches to clarify whether also SHP2 contributes to robustness of STAT3 activation and whether SHP2 affects the amount of information transferred through IL-6-induced JAK/STAT signalling. Results SHP2 increases robustness of both basal, cytokine-independent STAT3 activation and early IL-6-induced STAT3 activation against differential STAT3 expression. However, SHP2 does not affect robustness of late IL-6-induced STAT3 activation. In contrast to SOCS3, SHP2 increases the amount of information transferred through IL-6-induced JAK/STAT signalling, probably by reducing cytokine-independent STAT3 activation and thereby increasing sensitivity of the cells. These effects are independent of SHP2-dependent MAPK activation. Conclusion In summary, the results of this study extend our knowledge of the functions of SHP2 in IL-6-induced JAK/STAT signalling. SHP2 is not only a repressor of basal and cytokine-induced STAT3 activity, but also ensures robustness and transmission of information. Plain English summary Cells within a multicellular organism communicate with each other to exchange information about the environment. Communication between cells is facilitated by soluble molecules that transmit information from one cell to the other. Cytokines such as interleukin-6 are important soluble mediators that are secreted when an organism is faced with infections or inflammation. Secreted cytokines bind to receptors within the membrane of their target cells. This binding induces activation of an intracellular cascade of reactions called signal transduction, which leads to cellular responses. An important example of intracellular signal transduction is JAK/STAT signalling. In healthy organisms signalling is controlled and timed by regulatory mechanisms, whose activation results in a controlled shutdown of signalling pathways. Interestingly, not all cells within an organism are identical. They differ in the amount of proteins involved in signal transduction, such as STAT3. These differences shape cellular communication and responses to intracellular signalling. Here, we show that an important negative regulatory protein called SHP2 (or PTPN11) is not only responsible for shutting down signalling, but also for steering signalling in heterogeneous cell populations. SHP2 increases robustness of STAT3 activation against variable STAT3 amounts in individual cells. Additionally, it increases the amount of information transferred through JAK/STAT signalling by increasing the dynamic range of pathway activation in heterogeneous cell populations. This is an amazing new function of negative regulatory proteins that contributes to communication in heterogeneous multicellular organisms in health and disease.


2012 ◽  
Vol 11 (3) ◽  
pp. 118-126 ◽  
Author(s):  
Olive Emil Wetter ◽  
Jürgen Wegge ◽  
Klaus Jonas ◽  
Klaus-Helmut Schmidt

In most work contexts, several performance goals coexist, and conflicts between them and trade-offs can occur. Our paper is the first to contrast a dual goal for speed and accuracy with a single goal for speed on the same task. The Sternberg paradigm (Experiment 1, n = 57) and the d2 test (Experiment 2, n = 19) were used as performance tasks. Speed measures and errors revealed in both experiments that dual as well as single goals increase performance by enhancing memory scanning. However, the single speed goal triggered a speed-accuracy trade-off, favoring speed over accuracy, whereas this was not the case with the dual goal. In difficult trials, dual goals slowed down scanning processes again so that errors could be prevented. This new finding is particularly relevant for security domains, where both aspects have to be managed simultaneously.


2019 ◽  
Author(s):  
Anna Katharina Spälti ◽  
Mark John Brandt ◽  
Marcel Zeelenberg

People often have to make trade-offs. We study three types of trade-offs: 1) "secular trade-offs" where no moral or sacred values are at stake, 2) "taboo trade-offs" where sacred values are pitted against financial gain, and 3) "tragic trade-offs" where sacred values are pitted against other sacred values. Previous research (Critcher et al., 2011; Tetlock et al., 2000) demonstrated that tragic and taboo trade-offs are not only evaluated by their outcomes, but are also evaluated based on the time it took to make the choice. We investigate two outstanding questions: 1) whether the effect of decision time differs for evaluations of decisions compared to decision makers and 2) whether moral contexts are unique in their ability to influence character evaluations through decision process information. In two experiments (total N = 1434) we find that decision time affects character evaluations, but not evaluations of the decision itself. There were no significant differences between tragic trade-offs and secular trade-offs, suggesting that the decisions structure may be more important in evaluations than moral context. Additionally, the magnitude of the effect of decision time shows us that decision time, may be of less practical use than expected. We thus urge, to take a closer examination of the processes underlying decision time and its perception.


2019 ◽  
Author(s):  
Kasper Van Mens ◽  
Joran Lokkerbol ◽  
Richard Janssen ◽  
Robert de Lange ◽  
Bea Tiemens

BACKGROUND It remains a challenge to predict which treatment will work for which patient in mental healthcare. OBJECTIVE In this study we compare machine algorithms to predict during treatment which patients will not benefit from brief mental health treatment and present trade-offs that must be considered before an algorithm can be used in clinical practice. METHODS Using an anonymized dataset containing routine outcome monitoring data from a mental healthcare organization in the Netherlands (n = 2,655), we applied three machine learning algorithms to predict treatment outcome. The algorithms were internally validated with cross-validation on a training sample (n = 1,860) and externally validated on an unseen test sample (n = 795). RESULTS The performance of the three algorithms did not significantly differ on the test set. With a default classification cut-off at 0.5 predicted probability, the extreme gradient boosting algorithm showed the highest positive predictive value (ppv) of 0.71(0.61 – 0.77) with a sensitivity of 0.35 (0.29 – 0.41) and area under the curve of 0.78. A trade-off can be made between ppv and sensitivity by choosing different cut-off probabilities. With a cut-off at 0.63, the ppv increased to 0.87 and the sensitivity dropped to 0.17. With a cut-off of at 0.38, the ppv decreased to 0.61 and the sensitivity increased to 0.57. CONCLUSIONS Machine learning can be used to predict treatment outcomes based on routine monitoring data.This allows practitioners to choose their own trade-off between being selective and more certain versus inclusive and less certain.


Author(s):  
Steven Bernstein

This commentary discusses three challenges for the promising and ambitious research agenda outlined in the volume. First, it interrogates the volume’s attempts to differentiate political communities of legitimation, which may vary widely in composition, power, and relevance across institutions and geographies, with important implications not only for who matters, but also for what gets legitimated, and with what consequences. Second, it examines avenues to overcome possible trade-offs from gains in empirical tractability achieved through the volume’s focus on actor beliefs and strategies. One such trade-off is less attention to evolving norms and cultural factors that may underpin actors’ expectations about what legitimacy requires. Third, it addresses the challenge of theory building that can link legitimacy sources, (de)legitimation practices, audiences, and consequences of legitimacy across different types of institutions.


Author(s):  
Lisa Best ◽  
Kimberley Fung-Loy ◽  
Nafiesa Ilahibaks ◽  
Sara O. I. Ramirez-Gomez ◽  
Erika N. Speelman

AbstractNowadays, tropical forest landscapes are commonly characterized by a multitude of interacting institutions and actors with competing land-use interests. In these settings, indigenous and tribal communities are often marginalized in landscape-level decision making. Inclusive landscape governance inherently integrates diverse knowledge systems, including those of indigenous and tribal communities. Increasingly, geo-information tools are recognized as appropriate tools to integrate diverse interests and legitimize the voices, values, and knowledge of indigenous and tribal communities in landscape governance. In this paper, we present the contribution of the integrated application of three participatory geo-information tools to inclusive landscape governance in the Upper Suriname River Basin in Suriname: (i) Participatory 3-Dimensional Modelling, (ii) the Trade-off! game, and (iii) participatory scenario planning. The participatory 3-dimensional modelling enabled easy participation of community members, documentation of traditional, tacit knowledge and social learning. The Trade-off! game stimulated capacity building and understanding of land-use trade-offs. The participatory scenario planning exercise helped landscape actors to reflect on their own and others’ desired futures while building consensus. Our results emphasize the importance of systematically considering tool attributes and key factors, such as facilitation, for participatory geo-information tools to be optimally used and fit with local contexts. The results also show how combining the tools helped to build momentum and led to diverse yet complementary insights, thereby demonstrating the benefits of integrating multiple tools to address inclusive landscape governance issues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoav Kolumbus ◽  
Noam Nisan

AbstractWe study the effectiveness of tracking and testing policies for suppressing epidemic outbreaks. We evaluate the performance of tracking-based intervention methods on a network SEIR model, which we augment with an additional parameter to model pre-symptomatic and asymptomatic individuals, and study the effectiveness of these methods in combination with or as an alternative to quarantine and global lockdown policies. Our focus is on the basic trade-off between human-lives lost and economic costs, and on how this trade-off changes under different quarantine, lockdown, tracking, and testing policies. Our main findings are as follows: (1) Tests combined with patient quarantines reduce both economic costs and mortality, however, an extensive-scale testing capacity is required to achieve a significant improvement. (2) Tracking significantly reduces both economic costs and mortality. (3) Tracking combined with a moderate testing capacity can achieve containment without lockdowns. (4) In the presence of a flow of new incoming infections, dynamic “On–Off” lockdowns are more efficient than fixed lockdowns. In this setting as well, tracking strictly improves efficiency. The results show the extreme usefulness of policies that combine tracking and testing for reducing mortality and economic costs, and their potential to contain outbreaks without imposing any social distancing restrictions. This highlights the difficult social question of trading-off these gains against patient privacy, which is inevitably infringed by tracking.


Sign in / Sign up

Export Citation Format

Share Document