Effects of Combined Abdominal and Thoracic Airsac Occlusion on Respiration in Domestic Fowl

1990 ◽  
Vol 152 (1) ◽  
pp. 93-100 ◽  
Author(s):  
JOHN BRACKENBURY ◽  
JANE AMAKU

Ventilation and respiratory and blood gas tensions were monitored at rest and during running exercise, following bilateral occlusion of the cranial and caudal thoracic and the abdominal air sacs. This represents a removal of approximately 70% of the total air-sac capacity. At rest, the birds were strongly hypoxaemic/hypercapnaemic. Ventilation was maintained at its control value but respiratory frequency was significantly increased and tidal volume diminished. The birds were capable of sustained running at approximately three times the pre-exercise metabolic rate. Minute ventilation during exercise was the same as that of the controls, but breathing was faster and shallower. Exercise had no effect on blood gas tensions in either the control or the experimental birds. There was no evidence of a detrimental effect of air-sac occlusion on the effectiveness of inspiratory airflow valving in the lung: hypoxaemia appeared to be due to the altered respiratory pattern, which resulted in increased dead-space inhalation.

1985 ◽  
Vol 59 (5) ◽  
pp. 1477-1486 ◽  
Author(s):  
M. M. Grunstein ◽  
D. T. Tanaka

Maturation of the respiratory pattern and the active and passive mechanical properties of the respiratory system were assessed in 19 tracheotomized rabbits (postnatal age range: 1–26 days) placed in a body plethysmograph. With maturation both minute ventilation and tidal volume significantly increased, whereas respiratory frequency decreased. When normalized for body weight (kg) both the passive (Rrs X kg) and active (R'rs X kg) resistances of the respiratory system significantly increased with age, whereas the corresponding passive (Crs X kg-1) and active (C'rs X kg-1) compliances significantly decreased. At any given age R'rs X kg only slightly exceeded Rrs X kg, whereas C'rs X kg-1 was significantly lower than Crs X kg-1. Moreover, the maturational increases in Rrs X kg and R'rs X kg exceeded the corresponding decreases in Crs X kg-1 and C'rs X kg-1, resulting in significant age-related increases in both the passive (tau rs) and active (tau'rs) time constants of the respiratory system. Due to the age-related increases in tau'rs, producing a delayed volume response to any given inspiratory driving pressure, the relative volume loss obtained at any time during inspiration was greater in the maturing rabbit. On the other hand, because of concomitant compensatory changes in respiratory pattern, evidenced by increases in inspiratory duration with age, the end-inspiratory tidal volume loss in the maturing animal was maintained generally less than 10% at all postnatal ages. Thus maturational changes in respiratory pattern appear coupled to changes in the active mechanical properties of the respiratory system. The latter coupling serves to optimize the transduction of inspiratory pressure into volume change in a manner consistent with establishing the minimum inspiratory work of breathing during postnatal development.


1984 ◽  
Vol 57 (3) ◽  
pp. 881-887 ◽  
Author(s):  
G. G. Weinmann ◽  
W. Mitzner ◽  
S. Permutt

Tidal volumes used in high-frequency ventilation (HFV) may be smaller than anatomic dead space, but since gas exchange does take place, physiological dead space (VD) must be smaller than tidal volume (VT). We quantified changes in VD in three dogs at constant alveolar ventilation using the Bohr equation as VT was varied from 3 to 15 ml/kg and frequency (f) from 0.2 to 8 Hz, ranges that include normal as well as HFV. We found that VD was relatively constant at tidal volumes associated with normal ventilation (7–15 ml/kg) but fell sharply as VT was reduced further to tidal volumes associated with HFV (less than 7 ml/kg). The frequency required to maintain constant alveolar ventilation increased slowly as tidal volume was decreased from 15 to 7 ml/kg but rose sharply with attendant rapid increases in minute ventilation as tidal volumes were decreased to less than 7 ml/kg. At tidal volumes less than 7 ml/kg, the data deviated substantially from the conventional alveolar ventilation equation [f(VT - VD) = constant] but fit well a model derived previously for HFV. This model predicts that gas exchange with volumes smaller than dead space should vary approximately as the product of f and VT2.


1992 ◽  
Vol 72 (1) ◽  
pp. 116-120 ◽  
Author(s):  
Z. Weintraub ◽  
R. Alvaro ◽  
K. Kwiatkowski ◽  
D. Cates ◽  
H. Rigatto

To discover whether increases in inhaled O2 fraction (FIO2; up to 40%) decrease apnea via an increase in minute ventilation (VE) or a change in respiratory pattern, 15 preterm infants (birth weight 1,300 +/- 354 g, gestational age 29 +/- 2 wk, postnatal age 20 +/- 9 days) breathed 21, 25, 30, 35, and 40% O2 for 10 min in quiet sleep. A nosepiece and a flow-through system were used to measure ventilation. Alveolar PCO2, transcutaneous PO2, and sleep states were also assessed. All infants had periodic breathing with apneas greater than or equal to 3 s. With an increase in FIO2 breathing became more regular and apneas decreased (P less than 0.001). This regularization in breathing was not associated with significant changes in VE. However, the variability of VE, tidal volume, and expiratory and inspiratory times decreased significantly. The results indicate that the more regular breathing observed with small increases in FIO2 was not associated with significant changes in ventilation. The findings suggest that the increased oxygenation decreases apnea and periodicity in preterm infants, not via an increase in ventilation, but through a decrease in breath-to-breath variability of VE.


2019 ◽  
Vol 126 (4) ◽  
pp. 863-869 ◽  
Author(s):  
Maximilian Pinkham ◽  
Russel Burgess ◽  
Toby Mündel ◽  
Stanislav Tatkov

Nasal high flow (NHF) is an emerging therapy for respiratory support, but knowledge of the mechanisms and applications is limited. It was previously observed that NHF reduces the tidal volume but does not affect the respiratory rate during sleep. The authors hypothesized that the decrease in tidal volume during NHF is due to a reduction in carbon dioxide (CO2) rebreathing from dead space. In nine healthy males, ventilation was measured during sleep using calibrated respiratory inductance plethysmography (RIP). Carbogen gas mixture was entrained into 30 l/min of NHF to obtain three levels of inspired CO2: 0.04% (room air), 1%, and 3%. NHF with room air reduced tidal volume by 81 ml, SD 25 ( P < 0.0001) from a baseline of 415 ml, SD 114, but did not change respiratory rate; tissue CO2 and O2 remained stable, indicating that gas exchange had been maintained. CO2 entrainment increased tidal volume close to baseline with 1% CO2 and greater than baseline with 3% CO2 by 155 ml, SD 79 ( P = 0.0004), without affecting the respiratory rate. It was calculated that 30 l/min of NHF reduced the rebreathing of CO2 from anatomical dead space by 45%, which is equivalent to the 20% reduction in tidal volume that was observed. The study proves that the reduction in tidal volume in response to NHF during sleep is due to the reduced rebreathing of CO2. Entrainment of CO2 into the NHF can be used to control ventilation during sleep. NEW & NOTEWORTHY The findings in healthy volunteers during sleep show that nasal high flow (NHF) with a rate of 30 l/min reduces the rebreathing of CO2 from anatomical dead space by 45%, resulting in a reduced minute ventilation, while gas exchange is maintained. Entrainment of CO2 into the NHF can be used to control ventilation during sleep.


1995 ◽  
Vol 43 (2) ◽  
pp. 165 ◽  
Author(s):  
S Crafter ◽  
MI Soldini ◽  
CB Daniels ◽  
AW Smits

The effect of altering body temperature and the oxygen and carbon dioxide composition of inspired air on the respiratory pattern of the unrestrained lizard Pogona vitticeps was determined using pneumotachometry that did not require restraining the animal. P. vitticeps demonstrated a typical reptilian breathing pattern of groups of breaths separated by periods of breath-holding. Respiratory patterns were measured at 18 degrees C and at 37 degrees C. Minute ventilation decreased at the lower temperature as a result of a decrease in average frequency. Tidal volume was temperature independent. The change in average frequency resulted from both a decrease in the instantaneous inspiratory time and an increase in the time spent in a non-ventilatory period. As a result, the work of breathing was less at 18 degrees C than at 37 degrees C. With the exception of tidal volume, breathing patterns were independent of changes to the composition of inspired air. At both 18 degrees C and 37 degrees C, inspiring a 5% CO2/13% O-2/82% N-2 gas mixture increased tidal volume but did not increase minute ventilation.


1975 ◽  
Vol 39 (3) ◽  
pp. 462-468 ◽  
Author(s):  
V. D. Minh ◽  
G. F. Dolan ◽  
N. Kurihara ◽  
P. J. Friedman ◽  
R. G. Konopka ◽  
...  

Stability in lobar ventilation was examined in dogs during bilateral electrophrenic respiration (BEPR) and positive pressure-assisted ventilation (PPAV). Bilateral prior ligation of the lower and middle lobe pulmonary arteries monitoring of upper lobe ventilation as alveolar minute ventilation (VA), middle and lower lobe ventilation as dead space (VD), and VD/VT ratio, both calculated by the Bohr equation. As documented by chest films, transverse and anteroposterior thoracic diameters during BEPR decreased below FRC values whereas thoracic cephalocaudal dimension greatly increased. During PPAV, all thoracic dimensions increased. Despite these dissimilar regional chest movements, VA, VD, and VD/VT ratio were comparable between PPAV and BEPR under conditions of matched tidal volume and respiratory frequency. Stability in upper lobe ventilation during BEPR was maintained by caudal displacement despite the compression of the rib cage, as documented by tantalum bronchography. Lobar-interdependence appears to be the mechanism transmitting negative pleural pressure developed by the diaphragm to the upper lobes via lower and middle lobe inflation.


1983 ◽  
Vol 61 (11) ◽  
pp. 2388-2393 ◽  
Author(s):  
William K. Milsom ◽  
David R. Jones ◽  
Geoffrey R. J. Gabbott

The effects of increases in arterial CO2 tension at peripheral and central chemoreceptors on ventilation during recovery from submergence were studied using cross-perfusion techniques on unanaesthetized, White Pekin ducks. Immediately upon surfacing, under normal conditions, minute ventilation [Formula: see text] was elevated four to five times due to roughly equal increases in tidal volume (VT) and breathing frequency (f). Tidal volume returned to resting levels far more rapidly than breathing frequency. If only a peripheral hypercapnia was allowed to develop during diving, it produced the same maximum ventilatory reponse upon surfacing but recovery was much quicker. Central hypercapnia interacted with the peripheral hypercapnia in an additive fashion. There is evidence to suggest that hypercapnia has a greater effect in increasing VT, and hypoxia in increasing f, during the postdive recovery period. The prolonged tachypnea which normally persists after blood gas levels have returned to normal only occurs when hypoxia is allowed to develop during the dive.


1984 ◽  
Vol 56 (6) ◽  
pp. 1650-1654 ◽  
Author(s):  
M. Gleeson ◽  
J. H. Brackenbury

Minute volume, tidal volume, and respiratory frequency were measured during hyperpnea induced by exercise, increased body temperature, and CO2 inhalation. Ventilatory characteristics were compared before and after the vagus nerve had been blocked. In normal birds exercise produced increases in both tidal volume and respiratory frequency; hyperthermia produced a typical thermal polypnea consisting of greatly increased respiratory frequency and reduced tidal volume; CO2 inhalation produced increases in tidal volume and respiratory frequency when the birds were euthermic but a slowing of respiratory rate when the birds were hyperthermic. After vagal block these pronounced differences in the pattern of ventilatory response to the various respiratory stimuli were abolished. Instead there was a uniform ventilatory response to all three stimuli consisting mainly of increases in tidal volume combined with small increases in respiratory frequency. It is concluded that in the normal animal control of the varied pattern of ventilatory response to different respiratory stimuli is dependent on vagal fiber activity.


2010 ◽  
Vol 113 (4) ◽  
pp. 873-879 ◽  
Author(s):  
Aaron M. Joffe ◽  
Scott Hetzel ◽  
Elaine C. Liew

Background Mask ventilation is considered a "basic" skill for airway management. A one-handed "EC-clamp" technique is most often used after induction of anesthesia with a two-handed jaw-thrust technique reserved for difficult cases. Our aim was to directly compare both techniques with the primary outcome of air exchange in the lungs. Methods Forty-two elective surgical patients were mask-ventilated after induction of anesthesia by using a one-handed "EC-clamp" technique and a two-handed jaw-thrust technique during pressure-control ventilation in randomized, crossover fashion. When unresponsive to a jaw thrust, expired tidal volumes were recorded from the expiratory limb of the anesthesia machine each for five consecutive breaths. Inadequate mask ventilation and dead-space ventilation were defined as an average tidal volume less than 4 ml/kg predicted body weight or less than 150 ml/breath, respectively. Differences in minute ventilation and tidal volume between techniques were assessed with the use of a mixed-effects model. Results Patients were (mean ± SD) 56 ± 18 yr old with a body mass index of 30 ± 7.1 kg/m. Minute ventilation was 6.32 ± 3.24 l/min with one hand and 7.95 ± 2.70 l/min with two hands. The tidal volume was 6.80 ± 3.10 ml/kg predicted body weight with one hand and 8.60 ± 2.31 ml/kg predicted body weight with two hands. Improvement with two hands was independent of the order used. Inadequate or dead-space ventilation occurred more frequently during use of the one-handed compared with the two-handed technique (14 vs. 5%; P = 0.013). Conclusion A two-handed jaw-thrust mask technique improves upper airway patency as measured by greater tidal volumes during pressure-controlled ventilation than a one-handed "EC-clamp" technique in the unconscious apneic person.


Sign in / Sign up

Export Citation Format

Share Document