The Swimmeret Rhythm and its Relationships with Postural and Locomotor Activity in the Isolated Nervous System of the Crayfish Procambarus Clarkii

1991 ◽  
Vol 157 (1) ◽  
pp. 205-226
Author(s):  
JEAN-YVES BARTHE ◽  
MICHELLE BÉVENGUT ◽  
FRANÇOIS CLARAC

An in vitro preparation was developed consisting of the five thoracic and abdominal ganglia of the crayfish nerve cord, isolated from anterior nervous structures and from peripheral sensory inputs. The central activities of the thoracic leg, swimmeret and abdominal positioning motor systems and their relationships were studied. When motor outputs were tonic in the thoracic leg nerves (90% of the preparations), continuous rhythmic activity occurred and persisted for several hours in the swimmeret nerves. Interruptions of the swimmeret rhythm were associated with rhythmic motor outputs in the leg nerves (10% of the preparations). Motor activity in the abdominal positioning system was mainly tonic. Swimmeret rhythm reversibly disappeared during application of a sucrose block between the thoracic and abdominal parts of the nerve cord. Electrical stimulation of the connectives posterior to the block induced bouts of rhythmic swimmeret activity. Comparisons of the swimmeret rhythm (period) and the metachronal wave (duration, phase) showed that sectioning of the connectives between the thoracic and abdominal ganglia modified the period but did not affect the properties of the metachronal wave. We conclude that the presence of descending inputs from thoracic ganglia is necessary for persistent swimmeret activity.

1981 ◽  
Vol 90 (1) ◽  
pp. 85-100
Author(s):  
CHARLES H. PAGE

Postural extensions of the abdomen of the crayfish, Procambarus clarkii, could be evoked by mechanical stimulation of a single thoracic leg. Movement of a single leg joint was sufficient to initiate an extension response. Vigorous abdominal extensions were initiated either by depression of the whole leg (WLD) or by flexion of the mero-carpal joint (MCF). Weaker extension responses were obtained by depression of the thoracic-coxal and coxo-basal joints. Similar stimulation of the chelipeds did not elicit an abdominal extension response. Single-frame analysis of motion pictures of crayfish responding to WLD or MCF stimulation of a 2nd thoracic leg showed that the responses evoked by the two different stimulus situations were nearly identical. They differed principally in the responses of the leg located contralateral to the stimulated leg. Movements of most of the cephalic, thoracic and abdominal appendages accompanied the abdominal extension response. Only the eyes remained stationary throughout the response. The mean values of the latencies for the initiation of appendage movement ranged from 125 to 204 ma; abdominal movement had a mean latency of about 220 ms. The abdominal extension reflex resulted from the activity of the tonic superficial extensor muscles. The deep phasic extensor muscles were silent during the response. The mean latencies for the initiation of superficial extensor muscle activity by WLD and MCF stimulation were 53·7 and 50·0 ms respectively.


Author(s):  
Paolo Solari ◽  
Giorgia Sollai ◽  
Francesco Palmas ◽  
Andrea Sabatini ◽  
Roberto Crnjar

The integration of sensory information with adequate motor outputs is critical for animal survival. Here, we present an innovative technique based on a non-invasive closed-circuit device consisting of a perfusion/stimulation chamber chronically applied on a single leg of the crayfish Procambarus clarkii. Using this technique, we focally stimulated the leg inside the chamber and studied the leg-dependent sensory-motor integration involving other sensory appendages, such as antennules and maxillipeds, which remain unstimulated outside the chamber. Results show that the stimulation of a single leg with chemicals, such as disaccharides, is sufficient to trigger a complex search behaviour involving locomotion coupled with the reflex activation of antennules and maxillipeds. This technique can be easily adapted to other decapods and/or other sensory appendages. Thus, it has opened possibilities for studying sensory-motor integration evoked by leg stimulation in whole aquatic animals under natural conditions to supplement, with a direct approach, current ablation/silencing techniques.


1981 ◽  
Vol 90 (1) ◽  
pp. 231-251
Author(s):  
F. NAGY ◽  
M. MOULINS

1. In the lobster Jasus lalandii the activity of the oesophageal nervous system (monitored through the firing of its main motor neuron, OD1) is modulated by a pair of proprioceptors, the posterior stomach receptors (PSRs). 2. The in vitro preparation used consisted of the oesophageal nervous system, the suboesophageal ganglion and the two PSRs, which provide the only source of sensory input. 3. Stimulation of a PSR activates only the oesophageal oscillator located in the ipsilateral commissural ganglion. 4. When spike conduction is blocked in the ipsilateral connective, the stimulation of a PSR activates the contralateral oesophageal oscillator. Inputs from each PSR project to the different parts of the distributed oesophageal network (in the two commissural ganglia and the oesophageal ganglion), but at a given time only one of the PSRs' projections is effective. 5. The relative efficacy of the PSRs' projections is controlled by the oesophageal motor network itself and requires that the superior oesophageal nerves be intact (sons). 6. The PSRs' inputs are integrated in the suboesophageal ganglion before reaching the oesophageal network. However, this premotor step is not involved in the control of the unilaterality of PSRs' effects. 7. The PSRs are stimulated by at least two different rhythmical muscular sequences of the foregut (the gastric mill sequence and the cardiac sac sequence) and provide a source of rhythmical inputs to the CNS. 8. The oesophageal nervous system exhibits a periodically varying sensitivity to the PSRs' inputs, which is illustrated by a phase-response curve. 9. Each oesophageal oscillator can be entrained by the rhythmical PSRs' inputs over a range of period. This range includes the period of the spontaneous gastric rhythm. 10. It is proposed that the PSRs enable the oesophageal and the gastric mill rhythms to be coordinated through a peripheral loop. The participation of PSRs in the coordination of different motor sequences of the foregut is discussed.


1992 ◽  
Vol 169 (1) ◽  
pp. 181-206 ◽  
Author(s):  
DANIEL CATTAERT ◽  
JEAN-YVES BARTHE ◽  
DOUGLAS M. NEIL ◽  
FRANCOIS CLARAC

1. An isolated preparation of the crayfish nervous system, comprising both the thoracic and the abdominal ganglia together with their nerve roots, has been used to study the influence of a single leg proprioceptor, the coxo-basal chordotonal organ (CBCO), on the fictive swimmeret beating consistently expressed in this preparation. Both mechanical stimulation of the CBCO and electrical stimulation of its nerve were used. 2. In preparations not displaying rhythmic activity, electrical or mechanical stimulations evoked excitatory postsynaptic potentials (EPSPs) in about 30 % of the studied motor neurones with a fairly short and regular delay, suggesting an oligosynaptic pathway. Such stimulation could evoke rhythmic activity in swimmeret motor nerves. The evoked swimmeret rhythm often continued for several seconds after the stimulus period. 3. When the swimmeret rhythm was well established, electrical and mechanical stimuli modified it in a number of ways. Limited mechanical or weak electrical stimuli produced a small increase in swimmeret beat frequency, while more extreme movements of the CBCO or strong electrical stimuli had a disruptive effect on the rhythm. 4. The effect of low-intensity stimulation on existing swimmeret beating was phase-dependent: it shortened the beat cycle when applied during the powerstroke phase and lengthened it when applied during the retumstroke phase. 5. Rhythmic mechanical stimulation of CBCO or electrical stimulation of the CBCO nerve entrained the swimmeret rhythm within a limited range in relative or absolute coordination. Note: To whom reprint requests should be sent.


2003 ◽  
Vol 89 (3) ◽  
pp. 1187-1195 ◽  
Author(s):  
Jun Ren ◽  
John J. Greer

Patterned spontaneous activity is generated in developing neuronal circuits throughout the CNS including the spinal cord. This activity is thought to be important for activity-dependent neuronal growth, synapse formation, and the establishment of neuronal networks. In this study, we examine the spatiotemporal distribution of motor patterns generated by rat spinal cord and medullary circuits from the time of initial axon outgrowth through to the inception of organized respiratory and locomotor rhythmogenesis during late gestation. This includes an analysis of the neuropharmacological control of spontaneous rhythms generated within the spinal cord at different developmental stages. In vitro spinal cord and medullary-spinal cord preparations isolated from rats at embryonic ages (E)13.5–E21.5 were studied. We found age-dependent changes in the spatiotemporal pattern, neurotransmitter control, and propensity for the generation of spontaneous rhythmic motor discharge during the prenatal period. The developmental profile of the neuropharmacological control of rhythmic bursting can be divided into three periods. At E13.5–E15.5, the spinal networks comprising cholinergic and glycinergic synaptic interconnections are capable of generating rhythmic activity, while GABAergic synapses play a role in supporting the spontaneous activity. At late stages (E18.5–E21.5), glutamate drive acting via non- N-methyl-d-aspartate (non-NMDA) receptors is primarily responsible for the rhythmic activity. During the middle stage (E16.5–E17.5), the spontaneous activity results from the combination of synaptic drive acting via non-NMDA glutamatergic, nicotinic acetylcholine, glycine, and GABAA receptors. The modulatory actions of chloride-mediated conductances shifts from predominantly excitatory to inhibitory late in gestation.


1995 ◽  
Vol 74 (3) ◽  
pp. 1109-1117 ◽  
Author(s):  
K. C. Cowley ◽  
B. J. Schmidt

1. The role of inhibitory amino acid transmission in the coordination and generation of rhythmic motor activity was examined with the use of an in vitro neonatal rat spinal cord preparation. Before adding gamma-aminobutyric acid (GABA) or glycine receptor agonists and antagonists, rhythmic motor activity was induced by bath application of acetylcholine (ACh), N-methyl-D,L-aspartate (NMA), or serotonin (5-HT) while monitoring bilateral ankle flexor and extensor electroneurograms (ENGs). The timing of rhythmic flexor and extensor discharge was consistent with that seen during overground locomotion in 27% of 84 bath applications of these substances (n = 65 preparations). 2. Subsequent addition of the GABAA receptor agonist muscimol, the GABAB receptor agonist baclofen, or glycine, abolished rhythmic activity in 95% of the tested applications. 3. GABAB receptor blockade did not disrupt alternating patterns of ENG discharge. However, addition of the GABAA receptor antagonist bicuculline, or the glycine receptor antagonist strychnine, transformed alternating flexor-extensor and left-right activity into patterns characterized by bilaterally synchronous rhythmic activation of all hindlimb ENGs. The onset of individual ENG bursts was more abrupt following bicuculline or strychnine. Strychnine also synchronized high-frequency (4-8 Hz) packets of rhythmic discharge within ENG bursts. 4. Some preparations developed synchronous, but unstable, rhythmic activity in the presence of bicuculline or strychnine alone. However, NMA, 5-HT, or ACh was usually required in addition to these antagonists to promote sustained rhythmic activity.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 88 (4) ◽  
pp. 1753-1765 ◽  
Author(s):  
Daniel Cattaert ◽  
Michelle Bévengut

Contrary to orthodromic spikes that are generated in sensory organs and conveyed to CNS, antidromic spikes are generated in the axon terminals of the sensory neurons within the CNS and are conveyed to the peripheral sensory organ. Antidromic discharges are observed in primary afferent neurons of both vertebrates and invertebrates and seem to be related to the rhythmic activity of central neural networks. In this study, we analyzed the effect of antidromic discharges on the sensory activity of a leg proprioceptor in in vitro preparations of the crayfish CNS. Intracellular microelectrodes were used both to record the orthodromic spikes and to elicit antidromic spikes by injecting squares pulses of depolarizing current at various frequencies. Experiments were performed on the three types of identified sensory afferents (tonic, phasotonic, and phasic). The main results showed a reduction of the firing frequency of the orthodromic activity in 82% of the tested afferents. In tonic afferents, during their occurrences and according to their frequency, antidromic spikes or bursts reduced or suppressed the orthodromic activity. Following their terminations, they also induced a silent period and a gradual recovery of the orthodromic activity, both of which increased as the duration and the frequency of the antidromic bursts increased. In phasotonic and phasic afferents, antidromic bursts reduced or suppressed the phasic responses as their frequency and durations increased. In phasotonic afferents, if elicited prior to the movements, long-duration bursts with increasing frequency reduced more rapidly the tonic background activity than the phasic one whereas short-duration bursts at high frequency produced strong decreases of both. The effect of antidromic bursts accumulated when they are repetitively elicited. Antidromic bursts induced a much larger decrease of the sensory activity than adaptation alone. The occurrences of antidromic spikes or bursts may have a functional role in modulating the incoming sensory messages during locomotion. The mechanisms by which antidromic spikes modulate the firing sensitivity of the primary afferents may well lie in modifications of the properties of either mecanotransduction and/or spike initiation.


1985 ◽  
Vol 54 (04) ◽  
pp. 799-803 ◽  
Author(s):  
José Luís Pérez-Requejo ◽  
Justo Aznar ◽  
M Teresa Santos ◽  
Juana Vallés

SummaryIt is shown that the supernatant of unstirred whole blood at 37° C, stimulated by 1 μg/ml of collagen for 10 sec, produces a rapid generation of pro and antiaggregatory compounds with a final proaggregatory activity which can be detected for more than 60 min on a platelet rich plasma (PRP) by turbidometric aggregometry. A reversible aggregation wave that we have called BASIC wave (for Blood Aggregation Stimulatory and Inhibitory Compounds) is recorded. The collagen stimulation of unstirred PRP produces a similar but smaller BASIC wave. BASIC’s intensity increases if erythrocytes are added to PRP but decreases if white blood cells are added instead. Aspirin abolishes “ex vivo” the ability of whole blood and PRP to generate BASIC waves and dipyridamole “in vitro” significantly reduces BASIC’s intensity in whole blood in every tested sample, but shows little effect in PRP.


1962 ◽  
Vol 39 (3) ◽  
pp. 423-430
Author(s):  
H. L. Krüskemper ◽  
F. J. Kessler ◽  
E. Steinkrüger

ABSTRACT 1. Reserpine does not inhibit the tissue respiration of liver in normal male rats (in vitro). 2. The decrease of tissue respiration of the liver with simultaneous morphological stimulation of the thyroid gland after long administration of reserpine is due to a minute inhibition of the hormone synthesis in the thyroid gland. 3. The morphological alterations of the thyroid in experimental hypothyroidism due to perchlorate can not be prevented with reserpine.


1974 ◽  
Vol 77 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Gustav Wägar

ABSTRACT Whether the short-term regulation of thyroidal protein synthesis by TSH occurs at the transcriptional or the translational level was tested by measuring the effect of actinomycin D (act D) on the TSH-induced stimulation of L-14C-leucine incorporation into the thyroidal proteins of rats. TSH was injected 6 h before the rats were killed. The thyroid glands were then removed and incubated in vitro in the presence of L-14C-leucine for 2 h. The pronounced stimulation of leucine incorporation in the TSH-treated animals was depressed as compared with controls but still significant even when the animals had been pre-treated with 100 μg act D 24 and 7 h before sacrifice. On the other hand, act D strongly decreased incorporation of 3H-uridine into RNA. Short-term regulation of thyroidal protein synthesis by TSH appears to be partly but not wholly dependent on neosynthesis of RNA. Hence regulation may partly occur at the translation level of protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document