scholarly journals K+/H+ antiport in the tobacco hornworm midgut: the K(+)-transporting component of the K+ pump.

1994 ◽  
Vol 196 (1) ◽  
pp. 361-373 ◽  
Author(s):  
A Lepier ◽  
M Azuma ◽  
W R Harvey ◽  
H Wieczorek

The midgut of the tobacco hornworm secretes K+ across the apical plasma membrane of its goblet cells. This secondary K+ transport results from K+/H+ antiport energized by the proton-motive force generated by a primary, H(+)-transporting plasma membrane V-ATPase. Thus, the lepidopteran midgut constitutes a well-established example of the emerging concept that the proton-motive force is an alternative to the classical sodium-motive force for the energization of animal plasma membranes. K+/H+ antiport in the tobacco hornworm midgut is electrophoretic, exchanging 2H+ for 1K+. Under physiological conditions, it is energized by the voltage component of the proton-motive force. The strong coupling of electrophoretic K+/2H+ antiport with the electrogenic V-ATPase provides, in principle, the minimal device for the alkalization of the midgut lumen to pH values higher than 11. K+/H+ antiport is insensitive to bafilomycin A1, but is inhibited by amiloride or Concanavalin A. Lectin staining of blots after SDS-PAGE revealed several glycosylated polypeptides in the goblet cell apical membrane which are not part of the V-ATPase and thus are candidates for the antiporter protein. Current efforts are focused on the isolation of the K+/H+ antiporter.

1997 ◽  
Vol 321 (2) ◽  
pp. 487-495 ◽  
Author(s):  
Peter J. A. van den BROEK ◽  
Angeline E. van GOMPEL ◽  
Marijke A. H. LUTTIK ◽  
Jack T. PRONK ◽  
Carla C. M. van LEEUWEN

Transport of glucose and maltose was studied in plasma-membrane vesicles from Candida utilis. The yeast was grown on a mixture of glucose and maltose in aerobic carbon-limited continuous cultures which enabled transport to be studied for both sugars with the same vesicles. Vesicles were prepared by fusion of isolated plasma membranes with proteoliposomes containing bovine heart cytochrome coxidase as a proton-motive-force-generating system. Addition of reduced cytochrome cgenerated a proton-motive force, consisting of a membrane potential, negative inside, and a pH gradient, alkaline inside. Energization led to accumulation of glucose and maltose in these vesicles, reaching accumulation ratios of about 40Ő50. Accumulation also occurred in the presence of valinomycin or nigericin, but was prevented by a combination of the two ionophores or by uncoupler, showing that glucose and maltose transport are dependent on the proton-motive force. Comparison of sugar accumulation with quantitative data on the proton-motive force indicated a 1:1 H+/sugar stoichiometry for both transport systems. Efflux of accumulated glucose was observed on dissipation of the proton-motive force. Exchange and counterflow experiments confirmed the reversible character of the H+Őglucose symporter. In contrast, uncoupler or a mixture of valinomycin plus nigericin induced only a slow efflux of accumulated maltose. Moreover under counterflow conditions, the expected transient accumulation was small. Thus the H+Őmaltose symporter has some characteristics of a carrier that is not readily reversible. It is concluded that in C. utilisthe transport systems for glucose and maltose are both driven by the proton-motive force, but the mechanisms are different.


1987 ◽  
Vol 88 (1) ◽  
pp. 95-107 ◽  
Author(s):  
M.M. Mogensen ◽  
J.B. Tucker

This report is concerned with the nucleation and organization of microtubule bundles that assemble after ‘conventional’ centrosomal microtubule-organizing centres have been lost. The microtubule bundles in question span the lengths of wing epidermal cells. Bundles extend between hemidesmosomes at the apical cuticle-secreting surfaces of cells and basal attachment desmosomes that unite the dorsal and ventral epidermal layers of developing wing blades. Furthermore, each bundle includes up to 1500 microtubules and most of the microtubules are composed of 15 protofilaments. Individual cells were serially cross-sectioned at an early stage of bundle assembly. The number of microtubule profiles/cell cross-section decreased progressively by up to 59% of the most apical values in section sequences cut from fairly apical to more basal levels in the cells. The apical ends of microtubules were associated with numerous small dense plaque-like sites (diameter 0.1-0.2 micron), which were specialized regions of plasma membranes at the apical surfaces of cells. Many of the microtubules near apical plaques were not well aligned with each other; they ‘radiated away’ from cell apices. This was in contrast to the situation at more basal levels where most microtubules were oriented parallel to the longitudinal axes of cells. These findings indicate that the relatively dispersed arrays of apical plasma membrane-associated plaques act as microtubule-nucleating sites to initiate basally directed elongation of bundle microtubules. Apical cell surfaces and their plaques seem to operate as microtubule-nucleating and -organizing regions that functionally replace the centrosomal microtubule-organizing centres lost earlier in cell differentiation.


1989 ◽  
Vol 256 (2) ◽  
pp. F366-F369 ◽  
Author(s):  
D. Brown ◽  
E. J. Sorscher ◽  
D. A. Ausiello ◽  
D. J. Benos

Amiloride-sensitive Na+ channels were localized in semithin frozen sections of rat renal medullary collecting ducts, using polyclonal antibodies directed against purified bovine kidney Na+ channel protein. The apical plasma membrane of collecting duct principal cells was heavily stained by indirect immunofluorescence, whereas intercalated cells were negative. Basolateral plasma membranes of both cell types were unstained, as were subapical vesicles in the cytoplasm of these cells. In the thick ascending limb of Henle, some scattered granular fluorescence was seen in the cytoplasm and close to the apical pole of epithelial cells, suggesting the presence of antigenic sites associated with some membrane domains in these cells. No staining was detected in thin limbs of Henle, or in proximal tubules in the outer medulla. These results show that amiloride-sensitive sodium channels are located predominantly on the apical plasma membrane of medullary collecting duct principal cells, the cells that are involved in Na+ homeostasis in this region of the kidney.


Microbiology ◽  
1986 ◽  
Vol 132 (2) ◽  
pp. 369-377 ◽  
Author(s):  
C. P. Cartwright ◽  
J.-R. juroszek ◽  
M. J. Beavan ◽  
F. M. S. Ruby ◽  
S. M. F. De Morais ◽  
...  

2001 ◽  
Vol 49 (8) ◽  
pp. 1045-1053 ◽  
Author(s):  
Laetitia Alvarez ◽  
Marjorie Fanjul ◽  
Nicholas Carter ◽  
Etienne Hollande

The subcellular distribution of carbonic anhydrase II, either throughout the cytosol or in the cytoplasm close to the apical plasma membrane or vesicular compartments, suggests that this enzyme may have different roles in the regulation of pH in intra- or extracellular compartments. To throw more light on the role of pancreatic carbonic anhydrase II, we examined its expression and subcellular distribution in Capan-1 cells. Immunocytochemical analysis by light, confocal, and electron microscopy, as well as immunoblotting of cell homogenates or purified plasma membranes, was performed. A carbonic anhydrase II of 29 kD associated by weak bonds to the inner leaflet of apical plasma membranes of polarized cells was detected. This enzyme was co-localized with markers of Golgi compartments. Moreover, the defect of its targeting to apical plasma membranes in cells treated with brefeldin A was indicative of its transport by the Golgi apparatus. We show here that a carbonic anhydrase II is associated with the inner leaflet of apical plasma membranes and with the cytosolic side of the endomembranes of human cancerous pancreatic duct cells (Capan-1). These observations point to a role for this enzyme in the regulation of intra- and extracellular pH. (J Histochem Cytochem 49:1045–1053, 2001)


Reproduction ◽  
2003 ◽  
pp. 509-517 ◽  
Author(s):  
A Fazeli ◽  
RM Elliott ◽  
AE Duncan ◽  
A Moore ◽  
PF Watson ◽  
...  

Oviductal apical plasma membrane fractions have been successfully used to provide an in vitro model to study the role of direct membrane contact in sperm-oviduct interactions. Apical plasma membrane preparations from pig oviductal tissues show a dose-response in their ability to maintain boar sperm viability in vitro. Membrane preparations obtained from other tissues (lung and duodenum) are incapable of maintaining boar sperm viability to the same extent as oviductal tissue. The present study examined the validity of two hypotheses that arise from current knowledge of sperm-oviduct interactions, namely, that (i) apical plasma membranes prepared from ampullar regions of the oviduct are less effective than those from isthmus regions, and (ii) sperm survival is more effective in apical plasma membrane preparations derived from follicular phase oviducts than those derived from luteal phase oviducts. Both hypotheses were proved false. The nature of the active component(s) in the oviductal apical plasma membrane fractions was further investigated. Heat treatment (100 degrees C for 20 min) diminished the capacity of membranes to support boar sperm viability. Furthermore, a soluble salt-extracted fraction obtained from oviductal apical plasma membrane preparations was biologically active and supported boar sperm viability in vitro. This may indicate that the active factor(s) responsible for the maintenance of boar sperm viability is not an integral part of oviductal membranes and is peripherally bound to these membranes.


2006 ◽  
Vol 17 (8) ◽  
pp. 3638-3650 ◽  
Author(s):  
Kacper A. Wojtal ◽  
Erik de Vries ◽  
Dick Hoekstra ◽  
Sven C.D. van IJzendoorn

In hepatocytes, cAMP/PKA activity stimulates the exocytic insertion of apical proteins and lipids and the biogenesis of bile canalicular plasma membranes. Here, we show that the displacement of PKA-RIIα from the Golgi apparatus severely delays the trafficking of the bile canalicular protein MDR1 (P-glycoprotein), but not that of MRP2 (cMOAT), DPP IV and 5′NT, to newly formed apical surfaces. In addition, the direct trafficking of de novo synthesized glycosphingolipid analogues from the Golgi apparatus to the apical surface is inhibited. Instead, newly synthesized glucosylceramide analogues are rerouted to the basolateral surface via a vesicular pathway, from where they are subsequently endocytosed and delivered to the apical surface via transcytosis. Treatment of HepG2 cells with the glucosylceramide synthase inhibitor PDMP delays the appearance of MDR1, but not MRP2, DPP IV, and 5′NT at newly formed apical surfaces, implicating glucosylceramide synthesis as an important parameter for the efficient Golgi-to-apical surface transport of MDR1. Neither PKA-RIIα displacement nor PDMP inhibited (cAMP-stimulated) apical plasma membrane biogenesis per se, suggesting that other cAMP effectors may play a role in canalicular development. Taken together, our data implicate the involvement of PKA-RIIα anchoring in the efficient direct apical targeting of distinct proteins and glycosphingolipids to newly formed apical plasma membrane domains and suggest that rerouting of Golgi-derived glycosphingolipids may underlie the delayed Golgi-to-apical surface transport of MDR1.


Cells ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 3 ◽  
Author(s):  
Hai Guo ◽  
Zong Cui

In acute pancreatitis, histones are released by infiltrating neutrophils, but how histones modulate pancreatic acinar cell function has not been investigated. We have examined histone modulation of rat pancreatic acini and pancreatic acinar tumor cell AR4-2J by calcium imaging. Histones were found to have no effect on calcium in pancreatic acini but blocked calcium oscillations induced by cholecystokinin or acetylcholine. Both mixed (Hx) and individual (H1, H2A, H2B, H3, H4) histones induced calcium oscillations in AR4-2J. RT-PCR and Western blot verified the expression of histone-targeted Toll-like receptor (TLR) 2, 4 and 9. Immunocytochemistry identified TLR2/TLR4 on apical plasma membrane and TLR9 in zymogen granule regions in pancreatic acini. TLR2 was found on neighboring and TLR9 on peripheral plasma membranes, but TLR4 was in the nucleus in AR4-2J clusters. Neither TLR2 agonist zymosan-A nor TLR4 agonist lipopolysaccharide had any effect on calcium, but TLR9 agonist ODN1826 induced calcium oscillations; TLR9 antagonist ODN2088 blocked H4-induced calcium oscillations in AR4-2J, which also disappeared after treatment of AR4-2J with glucocorticoid dexamethasone, with concurrent TLR9 migration from plasma membrane to cell interiors. TLR9 down regulation with siRNA suppressed H4-induced calcium oscillations. These data together suggest that extracellular histones activate plasma membrane TLR9 to trigger calcium oscillations in AR4-2J cells.


Sign in / Sign up

Export Citation Format

Share Document