Heat production and oxygen consumption during metabolic recovery of white muscle fibres from the dogfish Scyliorhinus canicula

2000 ◽  
Vol 203 (7) ◽  
pp. 1201-1210 ◽  
Author(s):  
F. Lou ◽  
W. J. van Der Laarse ◽  
N.A. Curtin ◽  
R.C. Woledge

Oxygen consumption and heat production were measured during contraction and recovery of isolated, white muscle fibres from dogfish (Scyliorhinus canicula) at 19 degrees C. The contraction period consisted of 20 isometric twitches at 3 Hz; this was followed by a recovery period of 2 h without stimulation. We tested the hypothesis that recovery is wholly oxidative (not glycolytic) in these fibres. The following features support this hypothesis. (i) The ratio of total heat produced to oxygen consumed, 451+/−34 kJ mol(−)(1) (mean +/− s.e.m., N=29), was close to that expected for either the oxidation of carbohydrate, 473 kJ mol(−)(1), or the oxidation of fat, 439 kJ mol(−)(1). Even assuming the maximum value (95 % confidence limit) of the observed heat production, glycolysis could account for resynthesis of at most 18 % of the ATP used during the contractions. (ii) When the difference in rates of diffusion of oxygen and heat within the muscle are taken into account, the time courses of oxygen consumption and heat production match each other well during the entire recovery period. The efficiency of recovery (=energy used for ATP synthesis/energy available for ATP synthesis) was estimated from the results. This value, 84.0+/−20.1 % (mean +/− s.e.m., N=29), is relatively high and represents the first such measurement in functioning muscle.

1997 ◽  
Vol 200 (3) ◽  
pp. 495-501 ◽  
Author(s):  
F Lou ◽  
N Curtin ◽  
R Woledge

The energetic cost of activation was measured during an isometric tetanus of white muscle fibres from the dogfish Scyliorhinus canicula. The total heat production by the fibres was taken as a measure of the total energetic cost. This energy consists of two parts. One is due to crossbridge interaction which produces isometric force, and this part varies linearly with the degree of filament overlap in the fibres. The other part of the energy is that associated with activation of the crossbridges by Ca2+, mainly with uptake of Ca2+ into the sarcoplasmic reticulum by the ATP-driven Ca2+ pump. Total heat production was measured at various degrees of filament overlap beyond the optimum for force development. Extrapolation of heat versus force production data to evaluate the heat remaining at zero force gave a value of 34±5 % (mean ± s.e.m., N=24) for activation heat as a percentage of total heat production in a 2.0 s isometric tetanus. Values for 0.4 and 1.0 s of stimulation were similar. Comparison with values in the literature shows that the energetic cost of activation in dogfish muscle is very similar to that of frog skeletal muscle and it cannot explain the lower maximum efficiency of dogfish muscle compared with frog muscle. The proportion of energy for activation (Ca2+ turnover) is similar to that expected from a simple model in which Ca2+ turnover was varied to minimize the total energy cost for a contraction plus relaxation cycle.


1997 ◽  
Vol 200 (7) ◽  
pp. 1061-1071 ◽  
Author(s):  
N A Curtin ◽  
M J Kushmerick ◽  
R W Wiseman ◽  
R C Woledge

Recovery after contraction of white muscle fibres of dogfish was investigated using 31P-NMR and measurements of heat production. The muscle fibres were stimulated to perform either a single isometric tetanus or a series of brief isometric tetani; the NMR measurements showed that approximately half of the phosphocreatine (PCr) was used. The period of activity was followed by a recovery period without stimulation. Both NMR and heat measurements agreed in showing that recovery was very slow, requiring at least 60 min for PCr resynthesis and for the production of recovery heat. The NMR results showed that changes in intracellular pH and in the concentrations of PCr and intracellular phosphate (Pi) had very similar time courses. Intracellular pH moved in the alkaline direction during the period of activity and then returned monotonically during recovery. The non-phosphate buffer power was 13.0 +/- 3.1 mmol l-1 intracellular water per pH unit (N = 4, mean +/- S.E.M.). The results are consistent with the view that oxidative processes resynthesize PCr during recovery, which is slow because of the low mitochondrial content of these muscle fibres.


2012 ◽  
Vol 590 (8) ◽  
pp. 1973-1988 ◽  
Author(s):  
S. Park‐Holohan ◽  
M. Linari ◽  
M. Reconditi ◽  
L. Fusi ◽  
E. Brunello ◽  
...  

1999 ◽  
Vol 202 (2) ◽  
pp. 135-142 ◽  
Author(s):  
F. Lou ◽  
N.A. Curtin ◽  
R.C. Woledge

The production of work by the contractile component (CC) and the storage and release of work in the elastic structures that act in series (the series elastic component, SEC) with the contractile component were measured using white muscle fibres from the dogfish Scyliorhinus canicula. Heat production was also measured because the sum of work and heat is equivalent to the energy cost of the contraction (ATP used). These energy fluxes were evaluated in contractions with constant-velocity shortening either during stimulation or during relaxation. The muscle preparation was tetanized for 0.6 s and shortened by 1 mm (approximately 15 % of L0) at 3.5 or 7.0 mm s-1 (approximately 15 or 30 % of V0), where L0 is the muscle length at which isometric force is greatest and V0 is the maximum velocity of shortening. In separate experiments, the stiffness of the SEC was characterized from measurements of force responses to step changes in the length of contracting muscle. Using the values of SEC stiffness, we evaluated separately the work and heat associated with the CC and with the SEC. The major findings were (1) that work stored in the SEC could be completely recovered as external work when shortening occurred during relaxation (none of the stored work being degraded into heat) and (2) that, when shortening occurred progressively later during the contraction, the total energy cost of the contraction declined towards that of an isometric contraction.


1955 ◽  
Vol s3-96 (34) ◽  
pp. 151-159
Author(s):  
GEORGE A. EDWARDS ◽  
HELMUT RUSKA

Electron microscopic observations on ultrathin sections of the red thoracic flightmuscles and white leg muscles of Hydrophilus and Dytiscus are reported. In red muscle-fibres with high values in frequency of contraction, oxygen consumption, and dehydrogenase activity, the single fibrils are completely surrounded by huge mitochondria. Tracheoles penetrate the sarcolemma and supply the mitochondria with oxygen by intracellular branches. In the less active white muscle fibres, mitochondria are found irregularly scattered between the fibrils or along the I band. The intracellular tracheolization is sparse but an endoplasmic reticulum is widely spread between the synfibrillar contractile material. The same muscles of the two insects differ considerably in detail.


1996 ◽  
Vol 199 (3) ◽  
pp. 593-601 ◽  
Author(s):  
N Curtin ◽  
R Woledge

Work and heat production of white myotomal muscle fibres from dogfish were measured during sinusoidal movement (0.71-5.0 Hz) at 12 C. Stimulus phase (stimulus timing relative to movement) and duty cycle (stimulus duration as a fraction of movement cycle duration) were varied to determine the parameters optimal for power output and for efficiency (work/total energy output). Movements of 0.067 and 0.120L0 were used, where L0 is the muscle fibre length giving maximum force in an isometric tetanus. At each frequency of movement and duty cycle, the stimulus phase giving the highest power was the same as that giving the highest efficiency. In contrast, at each frequency and optimal stimulus phase, the dependence of power on duty cycle was very different from the dependence of efficiency on duty cycle. Power generally increased with increasing duty cycle, whereas efficiency decreased. Thus, high power can be achieved at the expense of efficiency by adjusting stimulus duty cycle. When stimulus phase and duty cycle were optimized, efficiency was always higher for the larger distance of movement. The efficiency of energy conversion can be maintained at a high level as the frequency of movement increases from 1.25 to 5.0 Hz.


1980 ◽  
Vol 43 (2) ◽  
pp. 321-328 ◽  
Author(s):  
K. J. McCracken ◽  
B. J. Caldwell

1. The heat production of groups of pigs, weaned at 10 d of age, was determined in an open-circuit respiration chamber at various ages between 10 and 33 d at temperatures above and below the lower critical temperature (Tcl).2. The heat production was lowest on the second or third day post weaning when pigs were given feed increasing by 25 g/pig per d from day 2. There was a marked diurnal pattern in heat production, the lowest values being recorded between 24.00 and 08.00 h.3. The mean thermal conductance (H/ΔT, kJ/h per m2 per °ΔT, where His total heat production, m2 is the surface area calculated as 0.097 W kg0.633 (Brody, 1945) and °ΔTis the difference between rectal temperature, taken as 39°, and air temperature) below Tcl was calculated as 18.0, 16.9, 18.5 and 21.2 respectively at 10, 17, 24 and 31 d of age. Maximum values of H/ΔT obtained during feeding periods were. on average, 4.5 kJ/h per me per °ΔT higher than the mean values.4. The maximum value for Tcl during the immediate post-weaning period was 25.9°. The mean Tcl at 17, 24 and 31 d were respectively 21.7, 18.4 and 18.6° for pigs fed almost to appetite.


Sign in / Sign up

Export Citation Format

Share Document