stimulus timing
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 24)

H-INDEX

20
(FIVE YEARS 5)

2022 ◽  
pp. 174702182210761
Author(s):  
Rebecca Lawrence ◽  
Lucas R Schneider ◽  
Jay Pratt

The attention repulsion effect (ARE) refers to distortions in the perception of space for areas nearby the focus of attention. For instance, when attending to the right-hand side of the visual field, objects in central vision may appear as though they are shifted to the left. The phenomenon is likely caused by changes in visual cell functioning. To date, research on the ARE has almost exclusively used exogenous manipulations of attention. In contrast, research exploring endogenous attention repulsion has been mixed, and no research has explored the effects of non-predictive arrow cues on this phenomenon. This gap in the literature is unexpected, as symbolic attention appears to be a unique form of attentional orienting compared to endogenous and exogenous attention. Therefore, the current study explored the effects of symbolic orienting on spatial repulsion and compared it to an exogenously generated ARE. Across four experiments, both exogenous and symbolic orienting resulted in AREs; however, the magnitude of the symbolic ARE was smaller than the exogenous ARE. This difference in magnitude persisted, even after testing both phenomena using stimulus timing parameters known to produce optimal effects in traditional attentional cueing paradigms. Therefore, compared to symbolic attention, it appears that exogenous manipulations may tightly constrict attention resources on the cued location, in turn potentially influencing the functioning of visual cells for enhanced perceptual processing.


2021 ◽  
Author(s):  
Thomas Pronk ◽  
Rebecca Hirst ◽  
Reinout Wiers ◽  
Jaap M. J. Murre

Research deployed via the internet and administered via smartphones could have access to more diverse samples than lab-based research. Diverse samples could have relatively high variation in their traits and so yield relatively reliable measurements of individual differences in these traits. Cognitive tasks have been reported to yield relatively low reliabities (Hedge et al., 2018), which could potentially be addressed by smartphone-mediated administration in diverse samples. We formulate several criteria to determine whether a cognitive task is suitable for individual differences research on commodity smartphones: no very brief or precise stimulus timing, relative response times (RTs), a maximum of two response options, and a small number of graphical stimuli. The Flanker Task meets these criteria. We compared the reliability of individual differences in the Flanker Effect across samples and devices in a pre-registered study. We found no evidence that a more diverse sample yields higher reliabilities. We also found no evidence that commodity smartphones yield lower reliabilities than commodity laptops. Hence, diverse samples might not improve reliability above student samples, but smartphones may well measure individual differences with cognitive tasks reliably. Exploratively, we examined different reliability coefficients, split-half reliabilities, and the development of reliability estimates as a function of task length.


2021 ◽  
Author(s):  
Caitriona Douglas ◽  
Antoine Tremblay ◽  
Aaron J Newman

EEG hyperscanning refers to recording electroencephalographic (EEG) data from multiple participants simultaneously. Many hyperscanning experimental designs seek to mimic naturalistic behavior, relying on unpredictable participant-generated stimuli. The majority of this research has focused on neural oscillatory activity that is quantified over hundreds of milliseconds or more. This contrasts with traditional event-related potential (ERP) research in which analysis focuses on transient responses, often only tens of milliseconds in duration. Deriving ERPs requires precise time-locking between stimuli and EEG recordings, and thus typically relies on pre-set stimuli that are presented to participants by a system that controls stimulus timing and synchronization with an EEG system. EEG hyperscanning methods typically use separate EEG amplifiers for each participant, increasing cost and complexity — including challenges in synchronizing data between systems. Here, we describe a method that allows for simultaneous acquisition of EEG data from a pair of participants engaged in conversation, using a single EEG system with simultaneous audio data collection that is synchronized with the EEG recording. This allows for the post-hoc insertion of trigger codes so that it is possible to analyze ERPs time-locked to specific events. We further demonstrate methods for deriving ERPs elicited by another person’s spontaneous speech, using this setup.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yuichi Takeuchi ◽  
Anett J. Nagy ◽  
Lívia Barcsai ◽  
Qun Li ◽  
Masahiro Ohsawa ◽  
...  

The medial septum (MS), as part of the basal forebrain, supports many physiological functions, from sensorimotor integration to cognition. With often reciprocal connections with a broad set of peers at all major divisions of the brain, the MS orchestrates oscillatory neuronal activities throughout the brain. These oscillations are critical in generating sensory and emotional salience, locomotion, maintaining mood, supporting innate anxiety, and governing learning and memory. Accumulating evidence points out that the physiological oscillations under septal influence are frequently disrupted or altered in pathological conditions. Therefore, the MS may be a potential target for treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies) to restore healthy patterns or erase undesired ones. Recent studies have revealed that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss here that stimulus timing is a critical determinant of treatment efficacy on multiple time scales. On-demand stimulation may dramatically reduce side effects by not interfering with normal physiological functions. A precise pattern-matched stimulation through adaptive timing governed by the ongoing oscillations is essential to effectively terminate pathological oscillations. The time-targeted strategy for the MS stimulation may provide an effective way of treating multiple disorders including Alzheimer’s disease, anxiety/fear, schizophrenia, and depression, as well as pain.


2021 ◽  
Author(s):  
Takeshi Miyamoto ◽  
Yutaka Hirata ◽  
Akira Katoh ◽  
Kenichiro Miura ◽  
Seiji Ono

The pursuit system has the ability to perform predictive control of eye movements. Even when the target motion is unpredictable due to velocity or direction changes, preceding changes in eye velocity are generated based on weighted averaging of past stimulus timing. However, it is still uncertain whether behavioral history influences the control of predictive pursuit. Thus, we attempted to clarify the influences of stimulus and behavioral histories on predictive pursuit to randomized target velocity. We used alternating-ramp stimuli, where the rightward velocity was fixed while the leftward velocity was either fixed (predictable) or randomized (unpredictable). Predictive eye deceleration was observed regardless of whether the target velocity was predictable or not. In particular, the predictable condition showed that the predictive pursuit responses corresponded to future target velocity. The linear mixed-effects model showed that both stimulus and behavioral histories of the previous two or three trials had influences on the predictive pursuit responses to the unpredictable target velocity. Our results suggest that the predictive pursuit system allows to track randomized target motion using the information from previous several trials, and the information of sensory input (stimulus) and motor output (behavior) in the past time sequences have partially different influences on predictive pursuit.


Author(s):  
Yuichi Takeuchi ◽  
Anett Nagy ◽  
Lívia Barcsai ◽  
Qun Li ◽  
Masahiro Ohsawa ◽  
...  

The medial septum (MS), as part of the basal forebrain, supports many physiological functions, from sensorimotor integration to cognition. With often reciprocal connections with a broad set of peers at all major divisions of the brain, the MS orchestrates oscillatory neuronal activities throughout the brain. These oscillations are critical in generating sensory and emotional salience, locomotion, maintaining mood, supporting innate anxiety, and governing learning and memory. Accumulating evidence points out that the physiological oscillations under septal influence are frequently disrupted or altered in pathological conditions. Therefore, the MS may be a potential target for treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies) to restore healthy patterns or erase undesired ones. Recent studies have revealed that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss here that stimulus timing is a critical determinant of treatment efficacy on multiple time scales. On-demand stimulation may dramatically reduce side effects by not interfering with normal physiological functions. A precise pattern-matched stimulation through adaptive timing governed by the ongoing oscillations is essential to effectively terminate pathological oscillations. The time-targeted strategy for the MS stimulation may provide an effective way of treating multiple disorders including Alzheimer’s disease, anxiety/fear, schizophrenia, and depression, as well as pain.


2021 ◽  
Author(s):  
Sriram Narayanan ◽  
Aalok Varma ◽  
Vatsala Thirumalai

AbstractThe brain uses internal models to estimate future states of the environment based on current inputs and to predict consequences of planned actions. Neural mechanisms that underlie the acquisition and use of these predictive models are poorly understood. Using a novel experimental paradigm, we show clear evidence for predictive processing in the larval zebrafish brain. We find that when presented with repetitive optic flow stimuli, larval zebrafish modulate their optomotor response by quickly acquiring internal representations of the optic flow pattern. Distinct subcircuits in the cerebellum are involved in the predictive representation of stimulus timing and in using them for motor planning. Evidence for such predictive internal representations appears quickly within two trials, lasts over minute timescales even after optic flow is stopped and quickly adapts to changes in the pattern. These results point to an entrainment-based mechanism that allows the cerebellum to rapidly generate predictive neural signals ultimately leading to faster response times.


2021 ◽  
Vol 118 (6) ◽  
pp. e2012937118
Author(s):  
Chris Scholes ◽  
Paul V. McGraw ◽  
Neil W. Roach

Perceptual stability is facilitated by a decrease in visual sensitivity during rapid eye movements, called saccadic suppression. While a large body of evidence demonstrates that saccadic programming is plastic, little is known about whether the perceptual consequences of saccades can be modified. Here, we demonstrate that saccadic suppression is attenuated during learning on a standard visual detection-in-noise task, to the point that it is effectively silenced. Across a period of 7 days, 44 participants were trained to detect brief, low-contrast stimuli embedded within dynamic noise, while eye position was tracked. Although instructed to fixate, participants regularly made small fixational saccades. Data were accumulated over a large number of trials, allowing us to assess changes in performance as a function of the temporal proximity of stimuli and saccades. This analysis revealed that improvements in sensitivity over the training period were accompanied by a systematic change in the impact of saccades on performance—robust saccadic suppression on day 1 declined gradually over subsequent days until its magnitude became indistinguishable from zero. This silencing of suppression was not explained by learning-related changes in saccade characteristics and generalized to an untrained retinal location and stimulus orientation. Suppression was restored when learned stimulus timing was perturbed, consistent with the operation of a mechanism that temporarily reduces or eliminates saccadic suppression, but only when it is behaviorally advantageous to do so. Our results indicate that learning can circumvent saccadic suppression to improve performance, without compromising its functional benefits in other viewing contexts.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Raphaël Thézé ◽  
Mehdi Ali Gadiri ◽  
Louis Albert ◽  
Antoine Provost ◽  
Anne-Lise Giraud ◽  
...  

Abstract Natural speech is processed in the brain as a mixture of auditory and visual features. An example of the importance of visual speech is the McGurk effect and related perceptual illusions that result from mismatching auditory and visual syllables. Although the McGurk effect has widely been applied to the exploration of audio-visual speech processing, it relies on isolated syllables, which severely limits the conclusions that can be drawn from the paradigm. In addition, the extreme variability and the quality of the stimuli usually employed prevents comparability across studies. To overcome these limitations, we present an innovative methodology using 3D virtual characters with realistic lip movements synchronized on computer-synthesized speech. We used commercially accessible and affordable tools to facilitate reproducibility and comparability, and the set-up was validated on 24 participants performing a perception task. Within complete and meaningful French sentences, we paired a labiodental fricative viseme (i.e. /v/) with a bilabial occlusive phoneme (i.e. /b/). This audiovisual mismatch is known to induce the illusion of hearing /v/ in a proportion of trials. We tested the rate of the illusion while varying the magnitude of background noise and audiovisual lag. Overall, the effect was observed in 40% of trials. The proportion rose to about 50% with added background noise and up to 66% when controlling for phonetic features. Our results conclusively demonstrate that computer-generated speech stimuli are judicious, and that they can supplement natural speech with higher control over stimulus timing and content.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9414 ◽  
Author(s):  
David Bridges ◽  
Alain Pitiot ◽  
Michael R. MacAskill ◽  
Jonathan W. Peirce

Many researchers in the behavioral sciences depend on research software that presents stimuli, and records response times, with sub-millisecond precision. There are a large number of software packages with which to conduct these behavioral experiments and measure response times and performance of participants. Very little information is available, however, on what timing performance they achieve in practice. Here we report a wide-ranging study looking at the precision and accuracy of visual and auditory stimulus timing and response times, measured with a Black Box Toolkit. We compared a range of popular packages: PsychoPy, E-Prime®, NBS Presentation®, Psychophysics Toolbox, OpenSesame, Expyriment, Gorilla, jsPsych, Lab.js and Testable. Where possible, the packages were tested on Windows, macOS, and Ubuntu, and in a range of browsers for the online studies, to try to identify common patterns in performance. Among the lab-based experiments, Psychtoolbox, PsychoPy, Presentation and E-Prime provided the best timing, all with mean precision under 1 millisecond across the visual, audio and response measures. OpenSesame had slightly less precision across the board, but most notably in audio stimuli and Expyriment had rather poor precision. Across operating systems, the pattern was that precision was generally very slightly better under Ubuntu than Windows, and that macOS was the worst, at least for visual stimuli, for all packages. Online studies did not deliver the same level of precision as lab-based systems, with slightly more variability in all measurements. That said, PsychoPy and Gorilla, broadly the best performers, were achieving very close to millisecond precision on several browser/operating system combinations. For response times (measured using a high-performance button box), most of the packages achieved precision at least under 10 ms in all browsers, with PsychoPy achieving a precision under 3.5 ms in all. There was considerable variability between OS/browser combinations, especially in audio-visual synchrony which is the least precise aspect of the browser-based experiments. Nonetheless, the data indicate that online methods can be suitable for a wide range of studies, with due thought about the sources of variability that result. The results, from over 110,000 trials, highlight the wide range of timing qualities that can occur even in these dedicated software packages for the task. We stress the importance of scientists making their own timing validation measurements for their own stimuli and computer configuration.


Sign in / Sign up

Export Citation Format

Share Document