Temperature affects the ontogeny of sexually dimorphic cuticular hydrocarbons in Drosophila melanogaster

2002 ◽  
Vol 205 (20) ◽  
pp. 3241-3249 ◽  
Author(s):  
Fabrice Savarit ◽  
Jean-François Ferveur

SUMMARY Hydrocarbons on the cuticle of mature Drosophila melanogasterflies play a crucial role in mate recognition, and protect against dehydration. We measured the effect of temperature on mature cuticular hydrocarbons (CHs) by (i) rearing two control strains at different temperatures, (ii) shifting the temperature after metamorphosis and (iii)inducing a single heat-shock pulse in control and heat-sensitive transgenic strains, over a period of 3 days following adult eclosion. This study describes the time course of the events involved in the production of male-and female-predominant CHs. We also found that `immature' CHs, sexually monomorphic CHs on younger flies, were not affected by these treatments.

2002 ◽  
Vol 79 (1) ◽  
pp. 23-40 ◽  
Author(s):  
FABRICE SAVARIT ◽  
JEAN-FRANÇOIS FERVEUR

In Drosophila melanogaster, the main cuticular hydrocarbons (HCs) are some of the pheromones involved in mate discrimination. These are sexually dimorphic in both their occurrence and their effects. The production of predominant HCs has been measured in male and female progeny of 220 PGal4 lines mated with the feminising UAS-transformer transgenic strain. In 45 lines, XY flies were substantially or totally feminised for their HCs. Surprisingly, XX flies of 14 strains were partially masculinised. Several of the PGal4 enhancer-trap variants screened here seem to interact with sex determination mechanisms involved in the control of sexually dimorphic characters. We also found a good relationship between the degree of HC transformation and GAL4 expression in oenocytes. The fat body was also involved in the switch of sexually dimorphic cuticular hydrocarbons but its effect was different between the sexes.


2018 ◽  
Author(s):  
Rochishnu Dutta ◽  
Tejinder Singh Chechi ◽  
Ankit Yadav ◽  
Nagaraj Guru Prasad

AbstractThe ability of interlocus sexual conflict to facilitate reproductive isolation is widely anticipated. However, very few experimental evolutionary studies have convincingly demonstrated the evolution of reproductive isolation due to sexual conflict. Recently a study on replicate populations of Drosophila melanogaster under differential sexual conflict found that divergent mate preference evolved among replicate populations under high sexual conflict regime. The precopulatory isolating mechanism underlying such divergent mate preference could be sexual signals such as cuticular hydrocarbons since they evolve rapidly and are involved in D. melanogaster mate recognition. Using D. melanogaster replicates used in the previous study, we investigate whether cuticular hydrocarbon divergence bears signatures of sexually antagonistic coevolution that led to reproductive isolation among replicates of high sexual conflict regime. We found that D. melanogaster cuticular hydrocarbon profiles are sexually dimorphic. Although replicate populations under high sexual conflict displayed assortative mating, we found no significant differences in the cuticular hydrocarbon profile between the high and low sexual conflict regimes. Instead we find cuticular hydrocarbon divergence patterns to be suggestive of the Buridan’s Ass regime which is one of the six possible mechanisms to resolve sexual conflict. Sexual selection that co-vary between populations under high and low sexual conflict regimes may also have contributed to the evolution of cuticular hydrocarbons. This study indicates that population differentiation as a result of cuticular hydrocarbon divergence cannot be credited to sexual conflict despite high sexual conflict regime evolving divergent cuticular hydrocarbon profiles.


1934 ◽  
Vol 17 (4) ◽  
pp. 487-498 ◽  
Author(s):  
A. H. Hersh

By a dissection of the data obtained by Driver on the effective periods at different temperatures in males and females of an ultrabar stock of Drosophila melanogaster it has been found that a symmetrical sigmoid curve satisfactorily describes the time course of the facet-determining reaction. Consequently the differences between members of the bar series in regard to this reaction do not represent merely developmental arrests of the process at some greater or lesser distance from a common upper asymptote, but the termination of the process is approached asymptotically. The velocity constant/temperature relation shows a discontinuity in the neighborhood of 21° which may be causally related to the change in the position of the effective period from the second to the third instar. The velocity constant apparently does not conform to the well known Arrhenius equation in its relation to temperature.


1997 ◽  
Vol 43 (12) ◽  
pp. 1111-1116 ◽  
Author(s):  
M. Pennanec'h ◽  
L. Bricard ◽  
G. Kunesch ◽  
J.-M. Jallon

2020 ◽  
Author(s):  
Crystal M. Vincent ◽  
Marc S. Dionne

AbstractMale and female animals exhibit differences in infection outcomes. One possible source of sexually dimorphic immunity is sex-specific costs of immune activity or pathology, but little is known about the independent effects of immune-induced versus microbe-induced pathology, and whether these may differ for the sexes. Here, through measuring metabolic and physiological outputs in wild-type and immune-compromised Drosophila melanogaster, we test whether the sexes are differentially impacted by these various sources of pathology and identify a critical regulator of this difference. We find that the sexes exhibit differential immune activity but similar bacteria-derived metabolic pathology. We show that female-specific immune-inducible expression of PGRP-LB, a negative regulator of the Imd pathway, enables females to reduce immune activity in response to reductions in bacterial numbers. In the absence of PGRP-LB, females are more resistant of infection, confirming the functional importance of this regulation and suggesting that female-biased immune restriction comes at a cost.


2011 ◽  
Vol 90 (3) ◽  
pp. 443-452 ◽  
Author(s):  
STÉPHANIE BEDHOMME ◽  
ADAM K. CHIPPINDALE ◽  
N. G. PRASAD ◽  
MATTHIEU DELCOURT ◽  
JESSICA K. ABBOTT ◽  
...  

2011 ◽  
Vol 279 (1732) ◽  
pp. 1359-1365 ◽  
Author(s):  
Elina Immonen ◽  
Michael G. Ritchie

Courtship behaviour involves a complex exchange of signals and responses. These are usually studied at the phenotypic level, and genetic or transcriptional responses to courtship are still poorly understood. Here, we examine the gene-expression changes in Drosophila melanogaster females in response to one of the key male courtship signals in mate recognition, song produced by male wing vibration. Using long oligonucleotide microarrays, we identified several genes that responded differentially to the presence or absence of acoustic courtship stimulus. These changes were modest in both the number of genes involved and fold-changes, but notably dominated by antennal signalling genes involved in olfaction as well as neuropeptides and immune response genes. Second, we compared the expression patterns of females stimulated with synthetic song typical of either conspecific or heterospecific ( Drosophila simulans ) males. In this case, antennal olfactory signalling and innate immunity genes were also enriched among the differentially expressed genes. We confirmed and investigated the time course of expression differences of two identified immunity genes using real-time quantitative PCR. Our results provide novel insight into specific molecular changes in females in response to courtship song stimulation. These may be involved in both signal perception and interpretation and some may anticipate molecular interactions that occur between the sexes after mating.


2017 ◽  
Author(s):  
Lily R. Qiu ◽  
Darren J. Fernandes ◽  
Kamila U. Szulc ◽  
Jun Dazai ◽  
Brian J. Nieman ◽  
...  

Sex differences exist in behaviours, disease and neuropsychiatric disorders. Sexual dimorphisms however, have yet to be studied across the whole brain and across a comprehensive time course of postnatal development. We used manganese-enhanced MRI (MEMRI) to longitudinally image male and female C57BL/6J mice across 9 time points, beginning at postnatal day 3. We recapitulated findings on canonically dimorphic areas, demonstrating the ability of MEMRI to study neuroanatomical sex differences. We discovered, upon whole-brain volume correction, that neuroanatomical regions larger in males develop early in life, while regions larger in females develop in peripubertal life. Furthermore, we found groups of areas with shared sexually dimorphic developmental trajectories that reflect behavioural and functional networks, and expression of genes involved with sex processes. Our results demonstrate the ability of MEMRI to reveal comprehensive developmental differences between male and female brains, which will improve our understanding of sex-specific predispositions to various neuropsychiatric disorders.


Author(s):  
D. T. Gauld ◽  
J. E. G. Raymont

The respiratory rates of three species of planktonic copepods, Acartia clausi, Centropages hamatus and Temora longicornis, were measured at four different temperatures.The relationship between respiratory rate and temperature was found to be similar to that previously found for Calanus, although the slope of the curves differed in the different species.The observations on Centropages at 13 and 170 C. can be divided into two groups and it is suggested that the differences are due to the use of copepods from two different generations.The relationship between the respiratory rates and lengths of Acartia and Centropages agreed very well with that previously found for other species. That for Temora was rather different: the difference is probably due to the distinct difference in the shape of the body of Temora from those of the other species.The application of these measurements to estimates of the food requirements of the copepods is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aiyan Guan ◽  
Inge Van Damme ◽  
Frank Devlieghere ◽  
Sarah Gabriël

AbstractAnisakidae, marine nematodes, are underrecognized fish-borne zoonotic parasites. Studies on factors that could trigger parasites to actively migrate out of the fish are very limited. The objective of this study was to assess the impact of different environmental conditions (temperature, CO2 and O2) on larval motility (in situ movement) and mobility (migration) in vitro. Larvae were collected by candling or enzymatic digestion from infected fish, identified morphologically and confirmed molecularly. Individual larvae were transferred to a semi-solid Phosphate Buffered Saline agar, and subjected to different temperatures (6 ℃, 12 ℃, 22 ℃, 37 ℃) at air conditions. Moreover, different combinations of CO2 and O2 with N2 as filler were tested, at both 6 °C and 12 °C. Video recordings of larvae were translated into scores for larval motility and mobility. Results showed that temperature had significant influence on larval movements, with the highest motility and mobility observed at 22 ℃ for Anisakis spp. larvae and 37 ℃ for Pseudoterranova spp. larvae. During the first 10 min, the median migration of Anisakis spp. larvae was 10 cm at 22 ℃, and the median migration of Pseudoterranova spp. larvae was 3 cm at 37 ℃. Larval mobility was not significantly different under the different CO2 or O2 conditions at 6 °C and 12 ℃. It was concluded that temperature significantly facilitated larval movement with the optimum temperature being different for Anisakis spp. and Pseudoterranova spp., while CO2 and O2 did not on the short term. This should be further validated in parasite-infected/spiked fish fillets.


Sign in / Sign up

Export Citation Format

Share Document