Fracture of aluminum-epoxy layered composites containing cracks

1982 ◽  
Vol 17 (2) ◽  
pp. 75-78 ◽  
Author(s):  
E E Gdoutos

The plane problem of a composite plate consisting of two aluminum half-planes bonded together through an epoxy layer and containing two parallel cracks, one in the layer and the other in one of the half-planes was considered. The composite plate was loaded by a uniform uniaxial compressive stress distribution applied along the surfaces of the crack of either the layer or the half-plane. The critical value of the applied stress as well as the corresponding angle for crack extension were determined by using the minimum strain energy density theory. Valuable results governing the dependence of the critical failure stress of the composite plate as well as the angle of crack extension from the more vulnerable crack on the geometry of the plate were derived.

2010 ◽  
Vol 13 (4) ◽  
pp. 40-50
Author(s):  
Thien Tich Truong ◽  
Bang Kim Tran

Predicting crack trajectory when crack propagation occurs plays an important role in fracture mechanics problems because this will evaluate whether important areas of structure are heavily influenced by crack propagation. This article will introduce three theories to predict crack path, including maximum tangential stress theory, maximum energy release rate theory and minimum strain energy density theory. Besides, the FRANC2D program is used to simulate the crack propagation based on three above theories.


2020 ◽  
Vol 39 (1) ◽  
pp. 189-199
Author(s):  
Longbiao Li

AbstractIn this paper, the temperature-dependent matrix multicracking evolution of carbon-fiber-reinforced silicon carbide ceramic-matrix composites (C/SiC CMCs) is investigated. The temperature-dependent composite microstress field is obtained by combining the shear-lag model and temperature-dependent material properties and damage models. The critical matrix strain energy criterion assumes that the strain energy in the matrix has a critical value. With increasing applied stress, when the matrix strain energy is higher than the critical value, more matrix cracks and interface debonding occur to dissipate the additional energy. Based on the composite damage state, the temperature-dependent matrix strain energy and its critical value are obtained. The relationships among applied stress, matrix cracking state, interface damage state, and environmental temperature are established. The effects of interfacial properties, material properties, and environmental temperature on temperature-dependent matrix multiple fracture evolution of C/SiC composites are analyzed. The experimental evolution of matrix multiple fracture and fraction of the interface debonding of C/SiC composites at elevated temperatures are predicted. When the interface shear stress increases, the debonding resistance at the interface increases, leading to the decrease of the debonding fraction at the interface, and the stress transfer capacity between the fiber and the matrix increases, leading to the higher first matrix cracking stress, saturation matrix cracking stress, and saturation matrix cracking density.


2004 ◽  
Vol 261-263 ◽  
pp. 75-80
Author(s):  
G.H. Nie ◽  
H. Xu

In this paper elastic stress field in an elliptic inhomogeneity embedded in orthotropic media due to non-elastic deformation is determined by the complex function method and the principle of minimum strain energy. Two complex parameters are expressed in a general form, which covers all characterizations of the degree of anisotropy for any ideal orthotropic elastic body. The stress acting on the long side of ellipse can be considered as a crack driving force and applied in failure and fatigue analysis of composites. For some special cases, the resulting solutions will reduce to the known results.


1976 ◽  
Vol 98 (4) ◽  
pp. 1370-1374 ◽  
Author(s):  
A. G. McLean ◽  
P. C. Arnold

Jenike, et al. [1] have presented a minimum strain energy theory to predict cylinder flow pressures in mass-flow bins. The complete variation of strain energy pressures is depicted by bounds requiring considerable numerical effort to develop for a specific cylinder geometry. Design charts are presented, but these are available for only two circular cylinder geometries. This paper summarizes and clarifies the minimum strain energy theory for predicting cylinder flow pressures. A single bound approximation which allows the magnitude of the peak flow pressure to be determined for both axisymmetric and plane flow cylinders is presented. This peak pressure may also be estimated by a single calculation of strain energy pressure. The usefulness and accuracy of these procedures are illustrated by reworking the example presented by Jenike, et al. [1].


1994 ◽  
Vol 47 (1S) ◽  
pp. S10-S17 ◽  
Author(s):  
Jin H. Huang ◽  
T. Mura

A method drawing from variational method is presented for the purpose of investigating the behavior of inclusions and inhomogeneities embedded in composite materials. The extended Hamilton’s principle is applied to solve many problems pertaining to composite materials such as constitutive equations, fracture mechanics, dislocation theory, overall elastic moduli, work hardening and sliding inclusions. Especially, elastic fields of sliding inclusions and workhardening rate of composite materials are presented in closed forms. For sliding inclusion problems, the sliding is modeled by adding the Somigliana dislocations along a matrix-inclusion interface. Exact formula are exploited for both Burgers vector and the disturbances in stress and strain due to sliding. The resulting expressions are obtained by utilizing the principle of minimum strain energy. Finally, explicit expressions are obtained for work-hardening rate of composite materials. It is verified that the work-hardening rate and yielding stress are independent on the size of inclusions but are dependent on the shape and the volume fraction of inclusions.


Sign in / Sign up

Export Citation Format

Share Document