Numerical modelling of defect formation on copper wire surfaces during the wire drawing process

Author(s):  
P Phelan ◽  
J Brandon ◽  
M Hillery

The crowsfoot defect, a characteristic surface cracking defect in wire drawing, usually occurs at fine wire diameters. This paper reports a numerical simulation of the wire drawing process where copper wire is reduced in diameter under varying conditions of friction, die angle and reduction ratios. The results of this analysis show that, contrary to existing theoretical models, the largest drawing stress and von Mises equivalent stress occur at the outer surface of the wire and not along the central axis as previously postulated.

Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 105 ◽  
Author(s):  
Gustavo Aristides Santana Martinez ◽  
Wei-Liang Qian ◽  
Leonardo Kyo Kabayama ◽  
Umberto Prisco

The efforts to increase the operating speed of the wire drawing process play a crucial role regarding the industrial productivity. The problem is closely related to various features such as heat generation, material plastic deformation, as well as the friction at the wire/die interface. For instance, the introduction of specific lubricants at the interface between the die and the wire may efficiently reduce the friction or in another context, induce a difference in friction among different regimes, as for the case of hydrodynamic lubrication. The present study systematically explores various aspects concerning the drawing process of an electrolytic tough pitch copper wire. To be specific, the drawing speed, drawing force, die temperature, lubricant temperature, and stress distributions are analysed by using experimental as well as numerical approaches. The obtained results demonstrate how the drawing stress and temperature are affected by the variation of the friction coefficient, die geometry, and drawing speed. It is argued that such a study might help in optimizing the operational parameters of the wire drawing process, which further leads to the improvement of the lubrication conditions and product quality while minimizing the energy consumption during the process.


2010 ◽  
Vol 154-155 ◽  
pp. 588-592 ◽  
Author(s):  
Zi Chao Lin ◽  
Fang Hong Sun ◽  
Zhi Ming Zhang ◽  
He Sheng Shen ◽  
Song Shou Guo

Diamond-coated drawing dies are considered as ideal drawing dies for their unique characteristics, such as high hardness, wear resistance and low friction. In order to optimize the parameters of diamond coated drawing dies, this study conducts a finite element method (FEM) simulation to calculate the von Mises stresses distribution on the interior-hole surfaces of diamond coated drawing die during the copper wire drawing process, and then refines the diamond coated drawing dies based on the simulation results. Furthermore, the drawing performance of the optimized diamond coated drawing die is examined in a real production of drawing copper wires, and the results show that its working lifetime increase by a factor of 12 comparing with the conventional tungsten carbide drawing die.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1089 ◽  
Author(s):  
Gustavo Aristides Santana Martinez ◽  
Eduardo Ferro dos Santos ◽  
Leonardo Kyo Kabayama ◽  
Erick Siqueira Guidi ◽  
Fernando de Azevedo Silva

Metalworking is an essential process for the manufacture of machinery and equipment components. The design of the die geometry is an essential aspect of metalworking, and directly affects the resultant product’s quality and cost. As a matter of fact, a comprehensive understanding of the die bearing geometry plays a vital role in the die design process. For the specific case of wire drawing, however, few efforts have been dedicated to the study of the geometry of the bearing zone. In this regard, the present paper involves an attempt to investigate the effects of different geometries of the die bearing. For different forms of reduction as well as bearing zones, measurements are carried out for the wire-drawing process. Subsequently, by extracting the friction coefficients from the electrolytic tough pitch copper wire in cold-drawn essays, the numerical simulations are also implemented. We present the results on both the superficial and center radial tensions obtained by finite element methods. It is observed that the reduction of the friction coefficient leads to an increase in radial stress, while for a given friction coefficient, the substitution of the C-type die by the R-type one results in a decrease in the superficial radial stress of up to 93.27%, but an increase at the center of the material. Moreover, the die angle is found to play a less significant role in the resultant center radial stress, but it significantly affects the superficial radial stress. Lastly, R-type dies result in smaller superficial radial stress, with a change of up to 34.48%, but a slightly larger center radial stress up to 6.55% for different die angles. The implications of the present findings are discussed.


2002 ◽  
Vol 124 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Shuguang Li ◽  
John Cook

This paper is concerned with the membrane shell analysis of filament overwound toroidal pressure vessels and optimum design of such pressure vessels using the results of the analysis by means of mathematical nonlinear programming. The nature of the coupling between overwind and linear has been considered based on two extreme idealizations. In the first, the overwind is rigidly coupled with the liner, so that the two deform together in the meridional direction as the vessel dilates. In the second, the overwind is free to slide relative to the linear, but the overall elongations of the two around a meridian are identical. Optimized designs with the two idealizations show only minor differences, and it is concluded that either approximation is satisfactory for the purposes of vessel design. Aspects taken into account are the intrinsic overwind thickness variation arising from the winding process and the effects of fiber pre-tension. Pre-tension can be used not only to defer the onset of yielding, but also to achieve a favorable in-plane stress ratio which minimizes the von Mises equivalent stress in the metal liner. Aramid fibers are the most appropriate fibers to be used for the overwind in this type of application. The quantity of fiber required is determined by both its short-term strength and its long-term stress rupture characteristics. An optimization procedure for the design of such vessels, taking all these factors into account, has been established. The stress distributions in the vessels designed in this way have been examined and discussed through the examples. A design which gives due consideration of possible mechanical damage to the surface of the overwind has also been addressed.


2021 ◽  
Vol 1035 ◽  
pp. 801-807
Author(s):  
Xiao Lei Yin ◽  
Jian Cheng ◽  
Gang Zhao

High-strength cable-steel bridge is the “lifeline” of steel structure bridges, which requires high comprehensive mechanical properties, and cold-drawing is the most important process to produce high-strength cable-steel bridge. Therefore, through the ABAQUS platform, a bridge wire drawing model was established, and the simulation analysis on the process of stress strain law and strain path trends for high-strength bridge steel wire from Φ 12.65 mm by seven cold-drawing to Φ 6.90 mm was conducted. The simulation results show that the wire drawing the heart of the main axial deformation, surface and sub-surface of the main axial and radial deformation occurred, with the increase in the number of drawing the road, the overall deformation of the wire was also more obvious non-uniformity. In the single-pass drawing process, the change in the potential relationship of each layer of material was small, and multiple inflection points appeared in the strain path diagram; the change in the seven-pass potential relationship was more drastic, which can basically be regarded as a simple superposition of multiple single-pass pulls.


2016 ◽  
Vol 835 ◽  
pp. 97-102
Author(s):  
Liliana Porojan ◽  
Florin Topală ◽  
Sorin Porojan

Zirconia is an extremely successful material for prosthetic restorations, offering attractive mechanical and optical properties. It offers several advantages for posterior restorations because it can withstand physiological posterior forces. The aim of the study was to achieve the influence of zirconia framework thickness on the mechanical behavior of all-ceramic crowns using numerical simulation. For the study a premolar was chosen in order to simulate the mechanical behavior in the components of all-ceramic crowns and teeth structures regarding to the zirconia framework thickness. Maximal Von Mises equivalent stress values were recorded in teeth and restorations. Due to the registered maximal stress values it can be concluded that it is indicated to achieve frameworks of at least 0.5 mm thickness in the premolar area. Regarding stress distribution concentration were observed in the veneer around the contact areas with the antagonists, in the framework under the functional cusp and in the oral part overall and in dentin around and under the marginal line, also oral. The biomechanical behavior of all ceramic crowns under static loads can be investigated by the finite element method.


2019 ◽  
Vol 950 ◽  
pp. 200-204
Author(s):  
Guang Ping Zou ◽  
Nadiia Dergachova

This study presents the dynamic response analyze of a simply supported and isotropic functionally graded (FG) double curved panel under mechanical loading. The aim of the research was to investigate mechanical behavior in a FGM curved panel due to different excitation mode of dynamic loading. The novelty of this research is an investigation of von Mises equivalent stress distribution in double curved panel due to different excitation mode. Computed results are found to agree well with the results reported in the literature. Moreover, influence of volume fraction of the material is studied.


2010 ◽  
Vol 135 ◽  
pp. 337-342
Author(s):  
Li Zhou ◽  
Shu Tao Huang ◽  
Li Fu Xu

A new composite polishing plate for polishing of CVD diamond films has been designed. The displacement and stress distributions of the high speed rotation polishing plate have been investigated due to centrifugal forces, and the polishing mechanism of super-high polishing has been analyzed by using X-ray photo-electron spectroscopy. The results showed that the displacements both in axial and radial increase with the increasing of the rotational speed. When the rotation speed reached to 1200 rad/s, the von Mises equivalent stress is about 242 MPa, which is safe for the composite polishing plate. Additional, the polishing mechanism is mainly the chemical reaction between carbon and titanium during the super-high speed polishing. At elevated temperature, the chemical reaction between oxygen and titanium, oxygen and carbon can also occur.


Author(s):  
MR Karamooz-Ravari ◽  
R Dehghani

Nowadays, NiTi rotary endodontic files are of great importance due to their flexibility which enables the device to cover all the portions of curved canal of tooth. Although this class of files are flexible, intracanal separation might happen during canal preparation due to bending or torsional loadings of the file. Since fabrication and characterization of such devices is challenging, time-consuming, and expensive, it is preferable to predict this failure before fabrication using numerical models. It is demonstrated that NiTi shape memory alloy shows asymmetric material response in tension and compression which can significantly affect the lifetime of the files fabricated from. In this article, the effects of this material asymmetry on the bending response of rotary files are assessed using finite element analysis. To do so, a constitutive model which takes material asymmetry into account is used in combination with the finite element model of a RaCe file. The results show that the material asymmetry can significantly affect the maximum von Mises equivalent stress as well as the force–displacement response of the tip of this file.


Sign in / Sign up

Export Citation Format

Share Document