Exact deflection expressions for a thin solid circular plate loaded by periphery couples

Author(s):  
A Nobili ◽  
A Strozzi ◽  
P Vaccari

A mechanical analysis is carried out for a thin, solid, circular plate, deflected by a series of periphery-concentrated couples with a radial or circumferential axis. Although such couples need not be of equal intensity or angularly equispaced, they must constitute a self-equilibrated system of couples. This problem is decomposed into a combination of two basic models, the first of which considers a single periphery couple with a radial axis, and the second addresses an edge couple with a circumferential axis. In both models the concentrated border couple is equilibrated by a sinusoidal boundary line load of proper intensity, whose wavelength equals the plate edge. When such basic configurations are combined, respecting the condition that the system of concentrated couples be self-equilibrated, the effects of the sinusoidal loads cancel out, and the title problem is recovered. A classical series solution in terms of purely flexural plate deflections is achieved for the two basic models, where the series coefficients are computed with the aid of an algebraic manipulator. For both models, the series is summed in analytical form over the whole plate region. Closed-form deflection formulae can thus be easily derived from the two basic models for any combination of self-equilibrated edge couples, where some selected relevant situations are developed in detail.

Author(s):  
E Dragoni ◽  
A Strozzi

A thin, solid, circular plate deflected by a number of transverse, concentrated, periphery forces, not necessarily angularly equispaced or equally oriented, and sustaining a central, transverse, equilibrating load, is mechanically analysed via a purely flexural model. This problem is interpreted as a angularly dephased combination of a relatively simple model. This fundamental scheme consists of a plate loaded by a single periphery force, by a central load of equal intensity and opposite direction, and by a sinusoidal periphery line loading whose wavelength equals the plate border and whose intensity renders the plate loading self-equilibrated. When a sequence of basic schemes, possibly referring to loads of different intensity, is combined, respecting the condition that the resultant of the periphery loads is equilibrated by a central force alone, the sinusoidal load effects vanish and the title problem is recovered. A series solution in terms of plate deflections is obtained for the basic model, whose coefficients are analytically evaluated via a computer algebra package. The series sum is expressed in finite terms involving the dilogarithmic function, valid over the whole plate region. In particular, the series is summed in analytical form for the whole plate periphery, along which the boundary deflections are expressed in closed form.


2000 ◽  
Vol 68 (5) ◽  
pp. 809-812 ◽  
Author(s):  
G. Monegato ◽  
A. Strozzi

A purely flexural mechanical analysis is presented for a thin, solid, circular plate, deflected by a central transverse concentrated force, and bilaterally supported along two antipodal periphery arcs, the remaining part of the boundary being free. This problem is modeled in terms of a singular integral equation of the Prandtl type, which possesses a unique solution expressed in terms of a reaction force containing a factor exhibiting square root endpoint singularities. This solution is then shown not to respect the requested boundary constraints. It is therefore concluded that, within the framework of the purely flexural plate theory, the title problem cannot admit the weighted L2 solution here examined. It cannot, however, be excluded that a solution to the title problem exists, which possesses stronger endpoint singularities than those examined in this paper, or is of a more general form than the one considered here.


1979 ◽  
Vol 14 (3) ◽  
pp. 103-109 ◽  
Author(s):  
J R Barber

Closed-form solutions and stress-concentration data are obtained for the problem of a sector of an annular plate subjected to moments and transverse forces on its radial edges. Closed-form solutions are also given for a semi-infinite plate or a circular plate subjected to a system of concentrated forces and/or moments at the edge.


1954 ◽  
Vol 21 (1) ◽  
pp. 45-51
Author(s):  
Herbert Reismann

Abstract This paper develops a method for the evaluation of deflections, moments, shears, and stresses of a circular or ring-shaped plate on an elastic foundation under transverse loads. A series solution is derived for plates subjected to edge and/or concentrated loads and is given in terms of tabulated functions. It is exact within the assumptions underlying the classical theory of plates and includes, as a particular case, the known solution of the corresponding radially symmetric problem. Two examples displaying radial asymmetry are worked. A solution is given for (a) a circular plate resting on an elastic foundation, clamped at the boundary and subjected to an arbitrarily placed concentrated load, and (b) a plate of infinite extent, resting on an elastic foundation and clamped to the boundary of a rigid circular disk to which a pure moment is applied.


2000 ◽  
Vol 68 (2) ◽  
pp. 348-350 ◽  
Author(s):  
Lu Sun

Fourier transform is used to solve the problem of steady-state response of a beam on an elastic Winkler foundation subject to a moving constant line load. Theorem of residue is employed to evaluate the convolution in terms of Green’s function. A closed-form solution is presented with respect to distinct Mach numbers. It is found that the response of the beam goes to unbounded as the load travels with the critical velocity. The maximal displacement response appears exactly under the moving load and travels at the same speed with the moving load in the case of Mach numbers being less than unity.


2008 ◽  
Vol 22 (20) ◽  
pp. 3473-3485
Author(s):  
M. M. SELIM

The paper discusses the problem of a two-dimensional static deformation as the result of normal line-load acting inside an irregular initially stressed isotropic half-space. The eigenvalue approach method has been used. The irregularity is expressed by a rectangle shape. Further, the results for the displacements and stresses have been derived in the closed form. The effect of initial stress and irregularity are shown graphically. It was found that the initial stresses as well as irregularity have a notable effect on this deformation.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1770
Author(s):  
Jun-Yi Sun ◽  
Qi Zhang ◽  
Xue Li ◽  
Xiao-Ting He

The anticipated use of a hollow linearly elastic annular membrane for designing elastic shells has provided an impetus for this paper to investigate the large deflection geometrically nonlinear phenomena of such a hollow linearly elastic annular membrane under transverse uniform loads. The so-called hollow annular membranes differ from the traditional annular membranes available in the literature only in that the former has the inner edge attached to a movable but weightless rigid concentric circular ring while the latter has the inner edge attached to a movable but weightless rigid concentric circular plate. The hollow annular membranes remove the transverse uniform loads distributed on “circular plate” due to the use of “circular ring” and result in a reduction in elastic response. In this paper, the large deflection geometrically nonlinear problem of an initially flat, peripherally fixed, linearly elastic, transversely uniformly loaded hollow annular membrane is formulated, the problem formulated is solved by using power series method, and its closed-form solution is presented for the first time. The convergence and effectiveness of the closed-form solution presented are investigated numerically. A comparison between closed-form solutions for hollow and traditional annular membranes under the same conditions is conducted, to reveal the difference in elastic response, as well as the influence of different closed-form solutions on the anticipated use for designing elastic shells.


2017 ◽  
Vol 8 (1-2) ◽  
pp. 90
Author(s):  
Babatunde Sunday Ogundare ◽  
Saheed O Akindeinde ◽  
Adebayo O Adewumi ◽  
Adebayo A Aderogba

In this article, a new analytical technique called Improved Parker-Sochacki Method (IPSM) for solving nonlinear Michaelis-Menten enzyme catalyzed reaction model is proposed. The global form of the solution for the concentrations of the substrate, enzyme and the enyzme-free product are obtained. Employing the Laplace-Pade resummation as a post processing technique on the computed series solution, the domain of convergence of the solution is greatly extended. The solution is therefore devoid of limited convergence interval that is typical of series solution of nonlinear differential equations.  The proposed method showed a significant improvement  over the conventional Parker-Sochacki Method (PSM). Furthermore, comparison of the results with numerically computed solutions elucidated the simplicity and accuracy of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document