The Effects of the Self-Assembly Time on the Preparation of Lanthanum-Based Thin Films on Sulfonated 3-Mercaptopropyl Trimethoxysilane

2012 ◽  
Vol 164 ◽  
pp. 284-288
Author(s):  
Tao Bai ◽  
Xian Hua Cheng

Lanthanum-based thin films are deposited on the oxidized 3-mercaptopropyl trimethoxysilane self-assembled monolayer (MPTS-SAM) based on the chemisorption of the sulfonic group. The surface energy, chemical composition, phase transformation and surface morphology of the films are analyzed by using contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The experimental results indicate that the lanthanum-based thin films are absorbed on oxidized MPTS-SAM and lanthanum element with different oxidation states exists in the thin films deposited on the surface of self-assembly monolayers. The content of lanthanum on the oxidized MPTS-SAM increases with the extension of the assembly time and the rare earth reached saturation when the time was 6h.

2015 ◽  
Vol 1117 ◽  
pp. 139-142 ◽  
Author(s):  
Marius Dobromir ◽  
Radu Paul Apetrei ◽  
A.V. Rogachev ◽  
Dmitry L. Kovalenko ◽  
Dumitru Luca

Amorphous Nb-doped TiO2 thin films were deposited on (100) Si and glass substrates at room temperature by RF magnetron sputtering and a mosaic-type Nb2O5-TiO2 sputtering target. To adjust the amount of the niobium dopant in the film samples, appropriate numbers of Nb2O5 pellets were placed on the circular area of the magnetron target with intensive sputtering. By adjusting the discharge conditions and the number of niobium oxide pellets, films with dopant content varying between 0 and 16.2 at.% were prepared, as demonstrated by X-ray photoelectron spectroscopy data. The X-ray diffraction patterns of the as-deposited samples showed the lack of crystalline ordering in the samples. Surfaces roughness and energy band gap values increase with dopant concentration, as showed by atomic force microscopy and UV-Vis spectroscopy measurements.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
B. Abdallah ◽  
A. Ismail ◽  
H. Kashoua ◽  
W. Zetoun

Lead sulfide thin films were prepared by chemical bath deposition (CBD) on both glass and Si (100) substrates. XRD analysis of the PbS film deposited at 25°C showed that the prepared films have a polycrystalline structure with (200) preferential orientation. Larger grains could be obtained by increasing the deposition time. The prepared films were also chemically characterized using X-ray photoelectron spectroscopy (XPS), which confirmed the presence of lead and sulfur as PbS. While energy dispersive X-ray spectroscopy (EDX) technique was used to verify the stoichiometry of the prepared films. Atomic force microscopy (AFM) was used to study the change in the films’ morphology with the deposition time. The effect of the deposition time, on both optical transmittance in the UV-Vis-NIR region and the structure of the film, was studied. The obtained results demonstrated that the optical band gap decreased when the thickness increased.


1999 ◽  
Vol 561 ◽  
Author(s):  
Y. Liu ◽  
R. O. Claus ◽  
Y.X. Wang ◽  
H. Lu ◽  
T. Distler

ABSTRACTWe report here the preparation of highly homogeneous multifunctional fullerene thin films for photonics using the electrostatic self-assembled monolayer technique at room temperature for the first time. The monolayers and multilayers were characterized via contact angle measurements, UV-vis spectroscopy and atomic force microscopy. These results demonstrated that close-packed, highly uniform fullerene or fullerene/metal cluster films with micron-thickness could be formed on various substrates including silicon, glass, metal and plastics.


2003 ◽  
Vol 780 ◽  
Author(s):  
Jie Xu ◽  
Daniel P. Durisin ◽  
Gregory W. Auner

AbstractBaTiO3 thin films have been grown on Si(100) substrate by KrF pulsed – laser deposition (PLD). The process parameters such as background gas pressure, substrate temperature, and laser fluence were varied in order to investigate their influence on the crystal structure, surface morphology and mechanical properties. The films were characterized by X-ray diffraction (XRD), UV/VIS/NIR spectrometer, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The hardness, Young's modules and scratch testing of BaTiO3 films were measured using nano-indenter. The stoichiometric BaTiO3 films having uniform grains were grown. The defects and particulates were generated at higher laser fluence. The size and density of particulates were increased with tighter laser focus. The results from dynamic scratch test indicated that the films with good adhesion were grown at moderate laser fluence.


2006 ◽  
Vol 950 ◽  
Author(s):  
Aaron S. Anderson ◽  
Andrew M. Dattelbaum ◽  
Gabriel A. Montaño ◽  
Jurgen G. Schmidt ◽  
Jennifer S. Martinez ◽  
...  

ABSTRACTWe report here a procedure for the functioalization of SiO2-coated, SiONx waveguides for biological assays. Surface functionalization occurs by self-assembly of an amine-terminated silane monolayer on the waveguide, followed by partial chemical modification with functionalized polyethylene glycol (PEG) groups. Functionalized surfaces were characterized by atomic force microscopy and contact angle measurements. When combined with a BSA blocking step, these functional PEG surfaces significantly reduced non-specific binding and allowed for specific binding to occur. An antibody sandwich assay for detection of Bacillus anthracis protective antigen was used to validate these surfaces for sensing applications.


1970 ◽  
Vol 17 (2) ◽  
pp. 191-196
Author(s):  
Artūras ŽALGA ◽  
Brigita ABAKEVIČIENĖ ◽  
Aleksej ŽARKOV ◽  
Aldona BEGANSKIENĖ ◽  
Aivaras KAREIVA ◽  
...  

The synthesis of nanostructured films of 20 mol% Y2O3 stabilized ZrO2 on corundum (Al2O3) substrates was performed from different sols using dip-coating technique. All obtained samples were repeatedly annealed at 800 °C temperature after each dipping procedure and fully characterized by X-ray diffraction (XRD) analysis. XRD data exhibited that at 800 °C temperature nano-sized Y0.2Zr0.8O2 thin films with cubic (Fm-3m) crystal structure have been formed. The morphological features of obtained coatings were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface tension and hydrophility of the synthesized films were determined by contact angle measurements (CAM).http://dx.doi.org/10.5755/j01.ms.17.2.491


Author(s):  
J Li ◽  
X H Sheng

Thin films deposited on a phosphonate 3-aminopropyltriethoxysilane (APTES) self- assembled monolayer (SAM) were prepared on a hydroxylated silicon substrate by self-assembling. The chemical compositions and the chemical state of the film elements were determined by X-ray photoelectron spectrometry. The thickness of the films was determined with an ellipsometer, while the morphologies and nanotribological properties of the samples were analysed by atomic force microscopy. As a result, the target film was obtained. It was also found that the thin films showed the lowest friction and adhesion, followed by APTES—SAM and phosphorylated APTES—SAM, while the silicon substrate showed the highest friction and adhesion. Microscale scratch/wear studies clearly showed that thin films were much more scratch/wear resistant than the other samples.


2008 ◽  
Vol 8 (3) ◽  
pp. 1248-1253 ◽  
Author(s):  
Yu-Qi Zhang ◽  
Li-Hua Gao ◽  
Ke-Zhi Wang ◽  
Hong-Jun Gao ◽  
Ye-Liang Wang

A dipolar Ru(II) complex, [(bpy)2Ru(bpbh)Ru(bpy)2](ClO4)4 {where bpbh = 1,6-bis-[2-(2-pyridyl) benzimidazoyl]hexane, bpy = 2,2′-bipyridine}, was synthesized and characterized. A multilayer film of at least 18 layers was successfully prepared by alternating adsorption of H4SiW12O40 and [Ru2(bpy)4(bpbh)](ClO4)4 by electrostatic layer-by-layer self-assembly. The multilayer films were studied by ultraviolet-visible and X-ray photoelectron spectroscopy, atomic force microscopy, and cyclic voltammetry.


Sign in / Sign up

Export Citation Format

Share Document